Foreground detection in a multi-target fish tracking from video-recordings using U-net based architecture
Visualitza/Obre
Altres autors/es
Data de publicació
2018ISSN
0922-6389
Resum
One of the fundamental problems in computer vision is the backgroundforeground
segmentation and most of the strategies have severe drawbacks when
working with natural images, where there are extreme conditions such as illumination
changes combined with sudden background differences or other noise; moreover
if the system has to face real-time restrictions. In this case authors focus on a
variation of the U-net architecture to obtain the segmentation of the objects (fishes)
in every single frame. The U-net has some interesting properties to explore in
the case of image segmentation, such as multi-scale parameter combination. The
reported preliminary results, working in a context of a multi-target fish tracking
are promising, and envisions an approach that could provide a real-time response
to long-lasting experiments using HQ video for multi-target tracking in real-time
Computer vision systems.
Tipus de document
Article
Versió del document
Versió acceptada
Llengua
Anglès
Pàgines
5 p.
Publicat per
IOS Press
Citació recomanada
Reig-Bolano, R., Serra-Serra, M., Marti-Puig, P. (2018). Foreground Detection in a Multi-Target Fish Tracking from Video-Recordings Using U-Net Based Architecture. Frontiers in Artificial Intelligence and Applications. Artificial Intelligence Research and Development (1535-6698). IOS Press. 308, pp.381-385. Doi: 10.3233/978-1-61499-918-8-381
Aquest element apareix en la col·lecció o col·leccions següent(s)
- Articles [1550]
Drets
Tots els drets reservats
