Blind channel deconvolution of real world signals using source separation techniques
Otros/as autores/as
Fecha de publicación
2005ISBN
8426713653
Resumen
In this paper we present a method for blind deconvolution of linear
channels based on source separation techniques, for real word signals. This
technique applied to blind deconvolution problems is based in exploiting not
the spatial independence between signals but the temporal independence between
samples of the signal. Our objective is to minimize the mutual information
between samples of the output in order to retrieve the original signal. In
order to make use of use this idea the input signal must be a non-Gaussian i.i.d.
signal. Because most real world signals do not have this i.i.d. nature, we will
need to preprocess the original signal before the transmission into the channel.
Likewise we should assure that the transmitted signal has non-Gaussian statistics
in order to achieve the correct function of the algorithm. The strategy used
for this preprocessing will be presented in this paper. If the receiver has the inverse
of the preprocess, the original signal can be reconstructed without the
convolutive distortion.
Tipo de documento
Objeto de conferencia
Lengua
Inglés
Palabras clave
Tractament del senyal
Páginas
12 p.
Publicado por
Springer
Citación
Solé Casals, J. & Monte-Moreno, E. 2005, "Blind channel deconvolution of real world signals using source separation techniques", Nonlinear Analyses and Algorithms for Speech Processing; LECTURE NOTES IN ARTIFICIAL INTELLIGENCE; International Conference on Non-Linear Speech Processing, eds. M. Faundez-Zanuy, L. Janer, A. Esposito, A. SatueVillar, J. Roure & V. EspinosaDuro, SPRINGER-VERLAG BERLIN, BERLIN; HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY, APR 19-22, 2005, pp. 357.
Este ítem aparece en la(s) siguiente(s) colección(ones)
- Documents de Congressos [174]
Derechos
(c) Springer, 2005
Tots els drets reservats