Symmetric periodic orbits near heteroclinic loops at infinity for a class of polynomial vector fields
Other authors
Publication date
2006ISSN
0218-1274
Abstract
For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an
open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial
vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools
for proving this result are, first, the existence in the phase portrait of a symmetry with respect
to a plane and, second, the existence of two symmetric heteroclinic loops.
Document Type
Article
Language
English
Keywords
Matemàtica
Pages
11 p.
Publisher
World Scientific Publishing
Citation
CORBERA SUBIRANA, Montserrat; LLIBRE, Jaume. "Symmetric periodic orbits near heteroclinic loops at infinity for a class of polynomial vector fields". A: International Journal of Bifurcation and Chaos, 2006, vol. 16, núm. 11, pàg. 3401-3410.
This item appears in the following Collection(s)
- Articles [1406]
Rights
Electronic version of an article published as International Journal of Bifurcation and Chaos, 2006, vol. 16, núm. 11, pàg. 3401-3410. [10.1142/S0218127406016884] © [copyright World Scientific Publishing Company] [http://www.worldscientific.com/doi/abs/10.1142/S0218127406016884?journalCode=ijbc]
Tots els drets reservats