2-Dimensional invariant tori for the spatial isosceles 3-body problem
View/Open
Other authors
Publication date
2000ISBN
981-02-4463-0
Abstract
We consider the circular Sitnikov problem as a special case of the restricted spatial isosceles 3-body problem. In appropriate coordinates we show the existence of 2-dimensional invariant tori that are formed by union of either periodic or quasiperiodic orbits of the circular Sitnikov problem, these tori are not KAM torio We prove that such invariant tori persist when we consider the spatial isosceles 3-body problem for sufficiently small values of one of the masses. The main tool for proving these results is the analytic continuation method of periodic orbits.
Document Type
Object of conference
Language
English
Keywords
Matemàtica
Pages
11 p.
Publisher
World Scientific Publishing
Citation
CORBERA SUBIRANA, Montserrat; LLIBRE, Jaume. 2-Dimensional Invariant Tori for the Spatial Isosceles 3-Body Problem. PATZCUARO, MEXICO. SINGAPORE; PO BOX 128 FARRER RD, SINGAPORE 9128, SINGAPORE: WORLD SCIENTIFIC PUBL CO PTE LTD, 2000.
This item appears in the following Collection(s)
- Documents de Congressos [174]
Rights
(c) World Scientific Publishing
Tots els drets reservats