Hardy’s inequalities for monotone functions on partly ordered measure spaces
Altres autors/es
Data de publicació
2006ISSN
0308-2105
Resum
We characterize the weighted Hardy inequalities for monotone functions in Rn
+. In
dimension n = 1, this recovers the standard theory of Bp weights. For n > 1, the
result was previously only known for the case p = 1. In fact, our main theorem is
proved in the more general setting of partly ordered measure spaces.
Tipus de document
Article
Llengua
Anglès
Paraules clau
Anàlisi harmònica
Pàgines
12 p.
Publicat per
Cambridge University Press
Citació
Arcozzi, Nicola, et al. "Hardy's Inequalities for Monotone Functions on Partly Ordered Measure Spaces." Proceedings of the Royal Society of Edinburgh Section A-Mathematics 136 (2006): 909-19.
Aquest element apareix en la col·lecció o col·leccions següent(s)
- Articles [1389]
Drets
(c) Cambridge University Press. The published version of the article: Arcozzi, Nicola, et al. "Hardy's Inequalities for Monotone Functions on Partly Ordered Measure Spaces." Proceedings of the Royal Society of Edinburgh Section A-Mathematics 136 (2006): 909-19 , is available at http://journals.cambridge.org
Tots els drets reservats