Automatic detection of laryngeal pathologies in running speech based on the HMM transformation of the nonlinear dynamics
Visualitza/Obre
Autor/a
Altres autors/es
Data de publicació
2013ISSN
0302-9743
Resum
This work describes a novel system for characterizing Laryngeal Pathologies using nonlinear dynamics, considering different complexity measures that are mainly based on the analysis of the time delay embedded space. The model is done by a kernel applied on Hidden Markov Model and decision of the Laryngeal pathology/control detection is performed by Support Vector Machine. Our system reaches accuracy up to 98.21%, improving the current reported results in the state of the art in the automatic classification of pathological speech signals (running speech) and showing the robustness of this proposal.
Tipus de document
Objecte de conferència
Llengua
Anglès
Paraules clau
Processos de Markov
Processament de la parla
Pàgines
8 p.
Publicat per
Springer
Citació
Travieso, C. M., Alonso, J. B., Orozco-Arroyave, J. R., Solé-Casals, J., & Gallego-Jutglà, E. (2013). Automatic detection of laryngeal pathologies in running speech based on the HMM transformation of the nonlinear dynamics A: Lecture Notes in Computer Science, 7911 LNAI pp. 136-143
Aquest element apareix en la col·lecció o col·leccions següent(s)
- Documents de Congressos [174]
Drets
(c) Springer (The original publication is available at www.springerlink.com)
Tots els drets reservats