A copula-based method for synthetic microarray data generation
Other authors
Publication date
2012Abstract
In this work, we propose a copula-based method to generate synthetic
gene expression data that account for marginal and joint probability distributions
features captured from real data. Our method allows us to implant significant
genes in the synthetic dataset in a controlled manner, giving the possibility of
testing new detection algorithms under more realistic environments.
Document Type
Object of conference
Language
English
Keywords
Dependència (Estadística)
Distribució (Teoria de la probabilitat)
Pages
3 p.
This item appears in the following Collection(s)
- Documents de Congressos [174]
Rights
Aquest document està subjecte a aquesta llicència Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/3.0/es/