Industrial AI in condition-based maintenance: A case study in wooden piece manufacturing
Visualitza/Obre
Altres autors/es
Data de publicació
2024ISSN
0360-8352
Resum
The article presents a case study applying industrial artificial intelligence to Condition-Based Maintenance
in a wooden piece manufacturing company. The study focuses on the extraction system that transports
wood residue to a warehouse, supplying a biomass plant for cold and heat generation in the factory. The
objective is to predict the temperature of the ten induction motors in the extraction system using an Extreme
Learning Machines-based methodology, enabling dynamic model prediction. Data from IoT sensors measuring
the motors’ intensity, temperature, and humidity are collected every minute, pre-processed, and stored in a
database. The pre-processing includes a single novel algorithm to detect and eliminate data containing possible
sensor blockages. The results demonstrate an implementable methodology utilizing single-layer feedforward
neural networks, prioritizing fast training while maintaining sufficient accuracy for detecting deviations in
motor behaviour. The research offers valuable insights for preventive maintenance applications in similar
industrial settings.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Matèries (CDU)
62 - Enginyeria. Tecnologia
Paraules clau
Pàgines
18 p.
Publicat per
Elsevier
Citació
Martí Puig, P., Amar Touhami, I., Colomer Perarnau, R., Serra Serra, M. (2024) Industrial AI in condition-based maintenance: A case study in wooden piece manufacturing. Computers and Industrial Engineering, 188, num: 109907. https://doi.org/10.1016/j.cie.2024.109907
Aquest element apareix en la col·lecció o col·leccions següent(s)
- Articles [1531]
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc-nd/4.0/