Mostra el registre parcial de l'element

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Grup de Recerca en Tractament de Dades i senyals
dc.contributorNankai University
dc.contributorInstituto Argentino de Radioastronomía
dc.contributorUniversity of Cambridge
dc.contributor.authorZhang, Jin
dc.contributor.authorFeng, Fan
dc.contributor.authorMartí i Puig, Pere
dc.contributor.authorCaiafa, Cesar F.
dc.contributor.authorSun, Zhe
dc.contributor.authorDuan, Feng
dc.contributor.authorSolé-Casals, Jordi
dc.date.accessioned2025-07-08T11:21:40Z
dc.date.available2025-07-08T11:21:40Z
dc.date.created2025-07
dc.date.issued2021
dc.identifier.citationZhang, J., Feng, F., Marti-Puig, P., Caiafa, C. F., Sun, Z., Duan, F., & Solé-Casals, J. (2021). Serial-EMD: Fast empirical mode decomposition method for multi-dimensional signals based on serialization. Information Sciences, 581, 215-232. https://doi.org/10.1016/j.ins.2021.09.033ca
dc.identifier.issn1872-6291ca
dc.identifier.urihttp://hdl.handle.net/10854/180297
dc.description.abstractEmpirical mode decomposition (EMD) has developed into a prominent tool for adaptive, scale-based signal analysis in various fields like robotics, security and biomedical engineer ing. Since the dramatic increase in amount of data puts forward higher requirements for the capability of real-time signal analysis, it is difficult for existing EMD and its variants to trade off the growth of data dimension and the speed of signal analysis. In order to decompose multi-dimensional signals at a faster speed, we present a novel signal-serialization method (serial-EMD), which concatenates multi-variate or multi-dimensional signals into a one dimensional signal and uses various one-dimensional EMD algorithms to decompose it. To verify the effects of the proposed method, synthetic multi-variate time series, artificial 2D images with various textures and real-world facial images are tested. Compared with existing multi-EMD algorithms, the decomposition time becomes significantly reduced. In addition, the results of facial recognition with Intrinsic Mode Functions (IMFs) extracted using our method can achieve a higher accuracy than those obtained by existing multi EMD algorithms, which demonstrates the superior performance of our method in terms of the quality of IMFs. Furthermore, this method can provide a new perspective to optimize the existing EMD algorithms, that is, transforming the structure of the input signal rather than being constrained by developing envelope computation techniques or signal decompo sition methods. In summary, the study suggests that the serial-EMD technique is a highly competitive and fast alternative for multi-dimensional signal analysis.ca
dc.format.extent18 p.ca
dc.language.isoengca
dc.publisherElsevierca
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.otherDescomposició, Mètode deca
dc.subject.otherTractament del senyalca
dc.titleSerial-EMD: Fast empirical mode decomposition method for multi-dimensional signals based on serializationca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.embargo.termscapca
dc.identifier.doihttps://doi.org/10.1016/j.ins.2021.09.033ca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.subject.udc62ca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc-nd/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix