Automatic shoreline detection by processing planview timex images using bi-LSTM networks
Visualitza/Obre
Autor/a
Altres autors/es
Data de publicació
2024ISSN
1873-6793
Resum
A new automatic shoreline detection method by using a bidirectional Long Short-Term Memory (bi-LSTM) Network that processes images column by column is presented. The model is trained on manually extracted shorelines from time-exposure video-images and is very robust against the selection of images for training. Thanks to the novelty of working with image columns, instead of with the whole image, the amount of labelled images for training is limited to a few tens or even less if the conditions are good. Moreover, this column approach makes the model to be robust to variable illuminated images and more easily interpretable, light and fast. There is a wide range of configuration parameters for the bi-LSTM layer by which the system works correctly, which facilitate to use the same network in different video stations. The highest accuracy is obtained by using CIELAB colour space. Without pre-processing the raw colour channels or defining a region of interest and without post-processing the obtained shorelines, the model demonstrates impressive accuracy with mean errors of 2.8 pixels (1.4 m) in Castelldefels and 1.7 pixels (0.85 m) in Barcelona. The method could also be effective for satellite shoreline detection by using as input channel the water index of the satellite detection techniques.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Matèries (CDU)
62 - Enginyeria. Tecnologia
Pàgines
18 p.
Publicat per
Elsevier
Citació recomanada
Marti-Puig, P., Serra-Serra, M., Ribas, F., Simarro, G., & Caballeria, M. (2024). Automatic shoreline detection by processing planview timex images using bi-LSTM networks. Expert Systems with Applications, 240, 122566. https://doi.org/10.1016/j.eswa.2023.122566
Aquest element apareix en la col·lecció o col·leccions següent(s)
- Articles [1542]
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by/4.0/

