Show simple item record

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Grup de Recerca en Tractament de Dades i senyals
dc.contributorMafrica
dc.contributorIRTA
dc.contributor.authorMasferrer Caralt, Gerard
dc.contributor.authorCarreras Ubach, Ricard
dc.contributor.authorFont-i-Furnols, Maria
dc.contributor.authorGispert, Marina
dc.contributor.authorSerra i Serra, Moisès
dc.contributor.authorMartí i Puig, Pere
dc.date.accessioned2025-07-08T11:43:16Z
dc.date.created2019
dc.date.issued2019
dc.identifier.citationMasferrer, G., Carreras, R., Font-i-Furnols, M., Gispert, M., Serra, M., Marti-Puig, P. (2019) Automatic ham classification method based on support vector machine model increases accuracy and benefits compared to manual classification. Meat science, 155. https://doi.org/10.1016/j.meatsci.2019.04.018ca
dc.identifier.issn0309-1740ca
dc.identifier.urihttp://hdl.handle.net/10854/180300
dc.description.abstractThe thickness of the subcutaneous fat (SFT) is a very important parameter in the ham, since determines the process the ham will be submitted. This study compares two methods to predict the SFT in slaughter line: an automatic system using an SVM model (Support Vector Machine) and a manual measurement of the fat carried out by an experienced operator, in terms of accuracy and economic benefit. These two methods were compared to the golden standard obtained by measuring SFT with a ruler in a sample of 400 hams equally distributed within each SFT class. The results show that the SFT prediction made by the SVM model achieves an accuracy of 75.3%, which represents an improvement of 5.5% compared to the manual measurement. Regarding economic benefits, SVM model can increase them between 12 and 17%. It can be concluded that the classification using SVM is more accurate than the one performed manually with an increase of the economic benefit for sorting.ca
dc.format.extent7 p.ca
dc.language.isoengca
dc.publisherElsevierca
dc.rightsTots els drets reservatsca
dc.subject.otherPernilca
dc.subject.otherClassificacióca
dc.subject.otherGreix -- Classificacióca
dc.titleAutomatic ham classification method based on support vector machine model increases accuracy and benefits compared to manual classificationca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.embargo.termsforeverca
dc.identifier.doihttps://doi.org/10.1016/j.meatsci.2019.04.018ca
dc.rights.accessLevelinfo:eu-repo/semantics/closedAccess
dc.subject.udc663/664ca


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint