| dc.contributor | Universitat de Vic - Universitat Central de Catalunya. Facultat de Ciències, Tecnologia i Enginyeries | |
| dc.contributor.author | Siré Langa, Albert | |
| dc.contributor.author | Lázaro Martínez, Jose Luis | |
| dc.contributor.author | Tardáguila-García, Aroa | |
| dc.contributor.author | Sanz-Corbalán, Irene | |
| dc.contributor.author | Grau Carrión, Sergi | |
| dc.contributor.author | Uribe-Elorrieta, Ibon | |
| dc.contributor.author | Jaimejuan Comes, Arià | |
| dc.contributor.author | Reig Bolaño, Ramon | |
| dc.date.accessioned | 2025-10-20T09:46:54Z | |
| dc.date.available | 2025-10-20T09:46:54Z | |
| dc.date.created | 2025 | |
| dc.date.issued | 2025 | |
| dc.identifier.citation | Siré Langa, A., Lázaro-Martínez, J., Tardáguila-García, A., Sanz-Corbalán, I., Grau-Carrión, S., Uribe-Elorrieta, I.,...Reig-Bolaño, R. (2025) Advanced AI-Driven Thermographic Analysis for Diagnosing Diabetic Peripheral Neuropathy and Peripheral Arterial Disease. Applied Sciences, 15(11), num: 5886. https://doi.org/10.3390/app15115886 | ca |
| dc.identifier.issn | 2076-3417 | ca |
| dc.identifier.uri | http://hdl.handle.net/10854/180590 | |
| dc.description.abstract | Abstract: This study explores the integration of advanced artificial intelligence (AI) techniques
with infrared thermography for diagnosing diabetic peripheral neuropathy (DPN)
and peripheral arterial disease (PAD). Diabetes-related foot complications, including DPN
and PAD, are leading causes of morbidity and disability worldwide. Traditional diagnostic
methods, such as the monofilament test for DPN and ankle–brachial pressure index for
PAD, have limitations in sensitivity, highlighting the need for improved solutions. Thermographic
imaging, a non-invasive, cost-effective, and reliable tool, captures temperature
distributions of the patient plantar surface, enabling the detection of physiological changes
linked to these conditions. This study collected thermographic data from diabetic patients
and employed convolutional neural networks (CNNs) and vision transformers (ViTs) to
classify individuals as healthy or affected by DPN or PAD (not healthy). These neural
networks demonstrated superior diagnostic performance, compared to traditional methods
(an accuracy of 95.00%, a sensitivity of 100.00%, and a specificity of 90% in the case of the
ResNet-50 network). The results underscored the potential of combining thermography
with AI to provide scalable, accurate, and patient-friendly diagnostics for diabetic foot care.
Future work should focus on expanding datasets and integrating explainability techniques
to enhance clinical trust and adoption. | ca |
| dc.format.extent | 13 p. | ca |
| dc.language.iso | eng | ca |
| dc.publisher | MDPI | ca |
| dc.rights | Attribution 4.0 International | * |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
| dc.subject.other | Intel·ligència artificial | ca |
| dc.subject.other | Intel·ligència artificial -- Aplicacions a la medicina | ca |
| dc.subject.other | Diabètics | ca |
| dc.subject.other | Termografia | ca |
| dc.title | Advanced AI-Driven Thermographic Analysis for Diagnosing Diabetic Peripheral Neuropathy and Peripheral Arterial Disease | ca |
| dc.type | info:eu-repo/semantics/article | ca |
| dc.description.version | info:eu-repo/semantics/publishedVersion | ca |
| dc.embargo.terms | cap | ca |
| dc.identifier.doi | https://doi.org/10.3390/app15115886 | ca |
| dc.rights.accessLevel | info:eu-repo/semantics/openAccess | |