Show simple item record

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Facultat de Ciències, Tecnologia i Enginyeries
dc.contributor.authorSiré Langa, Albert
dc.contributor.authorLázaro Martínez, Jose Luis
dc.contributor.authorTardáguila-García, Aroa
dc.contributor.authorSanz-Corbalán, Irene
dc.contributor.authorGrau Carrión, Sergi
dc.contributor.authorUribe-Elorrieta, Ibon
dc.contributor.authorJaimejuan Comes, Arià
dc.contributor.authorReig Bolaño, Ramon
dc.date.accessioned2025-10-20T09:46:54Z
dc.date.available2025-10-20T09:46:54Z
dc.date.created2025
dc.date.issued2025
dc.identifier.citationSiré Langa, A., Lázaro-Martínez, J., Tardáguila-García, A., Sanz-Corbalán, I., Grau-Carrión, S., Uribe-Elorrieta, I.,...Reig-Bolaño, R. (2025) Advanced AI-Driven Thermographic Analysis for Diagnosing Diabetic Peripheral Neuropathy and Peripheral Arterial Disease. Applied Sciences, 15(11), num: 5886. https://doi.org/10.3390/app15115886ca
dc.identifier.issn2076-3417ca
dc.identifier.urihttp://hdl.handle.net/10854/180590
dc.description.abstractAbstract: This study explores the integration of advanced artificial intelligence (AI) techniques with infrared thermography for diagnosing diabetic peripheral neuropathy (DPN) and peripheral arterial disease (PAD). Diabetes-related foot complications, including DPN and PAD, are leading causes of morbidity and disability worldwide. Traditional diagnostic methods, such as the monofilament test for DPN and ankle–brachial pressure index for PAD, have limitations in sensitivity, highlighting the need for improved solutions. Thermographic imaging, a non-invasive, cost-effective, and reliable tool, captures temperature distributions of the patient plantar surface, enabling the detection of physiological changes linked to these conditions. This study collected thermographic data from diabetic patients and employed convolutional neural networks (CNNs) and vision transformers (ViTs) to classify individuals as healthy or affected by DPN or PAD (not healthy). These neural networks demonstrated superior diagnostic performance, compared to traditional methods (an accuracy of 95.00%, a sensitivity of 100.00%, and a specificity of 90% in the case of the ResNet-50 network). The results underscored the potential of combining thermography with AI to provide scalable, accurate, and patient-friendly diagnostics for diabetic foot care. Future work should focus on expanding datasets and integrating explainability techniques to enhance clinical trust and adoption.ca
dc.format.extent13 p.ca
dc.language.isoengca
dc.publisherMDPIca
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherIntel·ligència artificialca
dc.subject.otherIntel·ligència artificial -- Aplicacions a la medicinaca
dc.subject.otherDiabèticsca
dc.subject.otherTermografiaca
dc.titleAdvanced AI-Driven Thermographic Analysis for Diagnosing Diabetic Peripheral Neuropathy and Peripheral Arterial Diseaseca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.embargo.termscapca
dc.identifier.doihttps://doi.org/10.3390/app15115886ca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint