Mostrar el registro sencillo del ítem

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Grup de Recerca Digital Care
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Centre d'Estudis Sanitaris i Socials
dc.contributor.authorReifs Jiménez, David
dc.contributor.authorCasanova Lozano, Lorena
dc.contributor.authorReig Bolaño, Ramon
dc.contributor.authorGrau Carrión, Sergi
dc.date.accessioned2025-10-20T10:39:31Z
dc.date.available2025-10-20T10:39:31Z
dc.date.created2023
dc.date.issued2023
dc.identifier.citationReifs, D., Casanova-Lozano, L., Reig-Bolaño, R., Grau-Carrion, S. (2023) Clinical validation of computer vision and artificial intelligence algorithms for wound measurement and tissue classification in wound care. Informatics In Medicine Unlocked, 37. https://doi.org/10.1016/j.imu.2023.101185ca
dc.identifier.issn2352-9148ca
dc.identifier.urihttp://hdl.handle.net/10854/180595
dc.description.abstractOne of the most important challenges in the management and treatment of complex wounds is the observation and measurement of different indicators that can be observed on the wound over time. This article will present the idea of addressing this challenge with the use of images captured on a mobile device. The aim of this work is to evaluate the use of digitization systems in the field of chronic wound management as tools that support the professional in improving patient care and decision making, as well as to use computer vision and artificial intelligence to improve wound assessment. An approach based on visual recognition and a classification system is proposed; visual recognition using superpixel techniques to determine the region of interest of the wound, as well as calculating its area and a classification system based on convolutional networks to classify its tissues. We found that our proposed approach, Visual Computing methods to detect Wound contour and measurement (with a Median Relative Error of 2.907 and inter-rater reliability of 0.98%) and Tissue Classification CNN with excellent results using Resnet50 with 0.85 of accuracy.ca
dc.format.extent12 p.ca
dc.language.isoengca
dc.publisherElsevierca
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherFerides i lesionsca
dc.subject.otherIntel·ligència artificialca
dc.subject.otherVisió per ordinadorca
dc.titleClinical validation of computer vision and artificial intelligence algorithms for wound measurement and tissue classification in wound careca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.embargo.termscapca
dc.identifier.doihttps://doi.org/10.1016/j.imu.2023.101185ca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir