Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Bioinformàtica i Estadística Mèdica
dc.contributor.authorCattaert, Tom
dc.contributor.authorUrrea Gales, Víctor
dc.contributor.authorNaj, Adam C.
dc.contributor.authorDe Lobel, Lizzy
dc.contributor.authorDe Wit, Vanessa
dc.contributor.authorFu, Mao
dc.contributor.authorMahachie John, Jestinah M.
dc.contributor.authorShen, Haiqing
dc.contributor.authorCalle, M. Luz
dc.contributor.authorRitchie, Marylyn D.
dc.contributor.authorEdwards, Todd L.
dc.contributor.authorVan Steen, Kristel
dc.date.accessioned2012-10-15T12:08:44Z
dc.date.available2012-10-15T12:08:44Z
dc.date.created2010-01
dc.date.issued2010-04
dc.identifier.citationCattaert T, Urrea V, Naj AC, De Lobel L, De Wit V, et al. (2010) FAM-MDR: A Flexible Family-Based Multifactor Dimensionality Reduction Technique to Detect Epistasis Using Related Individuals. PLoS ONE 5(4): e10304. doi:10.1371/journal.pone.0010304ca_ES
dc.identifier.issn1932-6203
dc.identifier.urihttp://hdl.handle.net/10854/1898
dc.description.abstractWe propose a novel multifactor dimensionality reduction method for epistasis detection in small or extended pedigrees, FAM-MDR. It combines features of the Genome-wide Rapid Association using Mixed Model And Regression approach (GRAMMAR) with Model-Based MDR (MB-MDR). We focus on continuous traits, although the method is general and can be used for outcomes of any type, including binary and censored traits. When comparing FAM-MDR with Pedigree-based Generalized MDR (PGMDR), which is a generalization of Multifactor Dimensionality Reduction (MDR) to continuous traits and related individuals, FAM-MDR was found to outperform PGMDR in terms of power, in most of the considered simulated scenarios. Additional simulations revealed that PGMDR does not appropriately deal with multiple testing and consequently gives rise to overly optimistic results. FAM-MDR adequately deals with multiple testing in epistasis screens and is in contrast rather conservative, by construction. Furthermore, simulations show that correcting for lower order (main) effects is of utmost importance when claiming epistasis. As Type 2 Diabetes Mellitus (T2DM) is a complex phenotype likely influenced by gene-gene interactions, we applied FAM-MDR to examine data on glucose area-under-the-curve (GAUC), an endophenotype of T2DM for which multiple independent genetic associations have been observed, in the Amish Family Diabetes Study (AFDS). This application reveals that FAM-MDR makes more efficient use of the available data than PGMDR and can deal with multi-generational pedigrees more easily. In conclusion, we have validated FAM-MDR and compared it to PGMDR, the current state-of-the-art MDR method for family data, using both simulations and a practical dataset. FAM-MDR is found to outperform PGMDR in that it handles the multiple testing issue more correctly, has increased power, and efficiently uses all available information.ca_ES
dc.formatapplication/pdf
dc.format.extent15 p.ca_ES
dc.language.isoengca_ES
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonsca_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ca_ES
dc.subject.otherEpidemiologia genèticaca_ES
dc.subject.otherBioinformàticaca_ES
dc.titleFAM-MDR: a flexible family-based multifactor dimensionality reduction technique to detect epistasis using related individualsca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0010304
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.indexacioIndexat a SCOPUS
dc.indexacioIndexat a WOS/JCRca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Aquest document està subjecte a aquesta llicència Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint