Mostrar el registro sencillo del ítem

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributor.authorCorbera Subirana, Montserrat
dc.contributor.authorLlibre, Jaume
dc.date.accessioned2012-10-16T07:30:10Z
dc.date.available2012-10-16T07:30:10Z
dc.date.created2004
dc.date.issued2004
dc.identifier.citationCORBERA SUBIRANA, Montserrat; LLIBRE, Jaume. "Families of periodic orbits for the spatial isosceles 3-body problem". A: Siam Journal on Mathematical Analysis, 2003, vol. 35, núm. 5, pàg. 1311-1346. DOI. 10.1137/S0036141002407880ca_ES
dc.identifier.issn0036-1410
dc.identifier.urihttp://hdl.handle.net/10854/1900
dc.description.abstractWe study the families of periodic orbits of the spatial isosceles 3-body problem (for small enough values of the mass lying on the symmetry axis) coming via the analytic continuation method from periodic orbits of the circular Sitnikov problem. Using the first integral of the angular momentum, we reduce the dimension of the phase space of the problem by two units. Since periodic orbits of the reduced isosceles problem generate invariant two-dimensional tori of the nonreduced problem, the analytic continuation of periodic orbits of the (reduced) circular Sitnikov problem at this level becomes the continuation of invariant two-dimensional tori from the circular Sitnikov problem to the nonreduced isosceles problem, each one filled with periodic or quasi-periodic orbits. These tori are not KAM tori but just isotropic, since we are dealing with a three-degrees-of-freedom system. The continuation of periodic orbits is done in two different ways, the first going directly from the reduced circular Sitnikov problem to the reduced isosceles problem, and the second one using two steps: first we continue the periodic orbits from the reduced circular Sitnikov problem to the reduced elliptic Sitnikov problem, and then we continue those periodic orbits of the reduced elliptic Sitnikov problem to the reduced isosceles problem. The continuation in one or two steps produces different results. This work is merely analytic and uses the variational equations in order to apply Poincar´e’s continuation method.ca_ES
dc.formatapplication/pdf
dc.format.extent36 p.ca_ES
dc.language.isoengca_ES
dc.publisherSociety for Industrial and Applied Mathematicsca_ES
dc.rights(c) Society for Industrial and Applied Mathematics, 2003
dc.subject.otherMatemàticaca_ES
dc.titleFamilies of periodic orbits for the spatial isosceles 3-body problem
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.doihttps://doi.org/10.1137/S0036141002407880
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.indexacioIndexat a SCOPUS
dc.indexacioIndexat a WOS/JCRca_ES


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir