Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributor.authorCorbera Subirana, Montserrat
dc.contributor.authorLlibre, Jaume
dc.date.accessioned2012-10-16T09:39:23Z
dc.date.available2012-10-16T09:39:23Z
dc.date.created2006
dc.date.issued2006
dc.identifier.citationCORBERA SUBIRANA, Montserrat; LLIBRE, Jaume. "Infinitely many periodic orbits for the rhomboidal five-body problem". A: Journal of Mathematical Physics, 2006, vol. 47, núm. 12, pàg. 122701. http://dx.doi.org/10.1063/1.2378617
dc.identifier.issn0022-2488
dc.identifier.urihttp://hdl.handle.net/10854/1901
dc.description.abstractWe prove the existence of infinitely many symmetric periodic orbits for a regularized rhomboidal five-body problem with four small masses placed at the vertices of a rhombus centered in the fifth mass. The main tool for proving the existence of such periodic orbits is the analytic continuation method of Poincaré together with the symmetries of the problem. © 2006 American Institute of Physics.ca_ES
dc.formatapplication/pdf
dc.format.extent14 p.ca_ES
dc.language.isoengca_ES
dc.publisherAmerica Institute of Physicsca_ES
dc.rights(c) American Institute of Physics, 2006
dc.subject.otherMatemàticaca_ES
dc.titleInfinitely many periodic orbits for the rhomboidal five-body problemca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.doihttps://doi.org/10.1063/1.2378617
dc.relation.publisherversionhttp://jmp.aip.org/
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dc.indexacioIndexat a SCOPUS
dc.indexacioIndexat a WOS/JCRca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint