Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributor.authorReig Bolaño, Ramon
dc.contributor.authorGarcía Ladona, Emili
dc.contributor.authorParisi Baradad, Vicenç
dc.contributor.authorMartí i Puig, Pere
dc.date.accessioned2012-12-12T12:30:15Z
dc.date.available2012-12-12T12:30:15Z
dc.date.created2008
dc.date.issued2008
dc.identifier.citationReig, R. [et al.]. A recursive approach to multiscalar data interpolation of sparsely sampled sea surface measurements at different spatial resolutions. A: OCEANS MTS/IEEE. "OCEANS'08 MTS/IEEE KOBE-TECHNO-OCEAN'08 Conference and Exhibition : Voyage toward the future". Kobe: 2008.ca_ES
dc.identifier.isbn978-1-4244-2126-8
dc.identifier.urihttp://hdl.handle.net/10854/1952
dc.description.abstractAbstract- In many oceanographic studies there is a need to reconstruct a signal from a set of sparse measurements. We propose an algorithm to iteratively approximate the intermediate values between irregularly sampled data, when a set of sparse values at coarser scales is known. This is possible when there is an approximation to a model for the multiresolution decomposition/reconstruction scheme of the dataset. Although the problem is ill-posed, this approach gives an easy scheme to interpolate the values of a signal using all the information available at different resolutions. This reconstruction method could be used as an extension of any interpolation method to optimize the multiresolution sparse data fusion. A simplified one-dimensional case illustrates the explanation; it is an algorithm based on a recursive scheme of a fast dyadic wavelet transform and its inversion, using a filter bank analysis/synthesis implementation for the wavelet transforms model. This can be a basis method suitable for applied cases where there are sparse measures from different instruments that are sensing the same scene simultaneously with several resolutions. Extensions of the method to sparse multiresolution dataset with higher dimensions (images or vector fields) also offer some promising preliminary resultsca_ES
dc.formatapplication/pdf
dc.format.extent7 p.ca_ES
dc.language.isoengca_ES
dc.publisherIEEEca_ES
dc.rights(c) IEEE
dc.rightsTots els drets reservatsca_ES
dc.subject.otherTractament del senyalca_ES
dc.subject.otherImatges -- Processament
dc.titleA recursive approach to Multiscalar Data Interpolation of sparsely sampled sea surface measurements at different spatial resolutionsca_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectca_ES
dc.identifier.doihttps://doi.org/10.1109/OCEANSKOBE.2008.4530949
dc.relation.publisherversionhttp://ieeexplore.ieee.org/
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccessca_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint