Mostra el registre parcial de l'element

dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributor.authorLatchoumane, Charles-François V.
dc.contributor.authorVialatte, François B.
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorMaurice, Monique
dc.contributor.authorWimalaratna, Sunil R.
dc.contributor.authorHudson, Niegel
dc.contributor.authorJaeseung, Jeonga
dc.contributor.authorCichocki, Andrej
dc.date.accessioned2013-02-12T20:00:18Z
dc.date.available2013-02-12T20:00:18Z
dc.date.created2012
dc.date.issued2012
dc.identifier.citationLATCHOUMANE, Charles-Francois V. i altres . "Multiway array decomposition analysis of EEGs in Alzheimer's disease". A: Journal of neuroscience methods, 2012, vol. 207, núm. 1, pàg. 41-50.ca_ES
dc.identifier.issn0165-0270
dc.identifier.urihttp://hdl.handle.net/10854/2074
dc.description.abstractMethods for the extraction of features from physiological datasets are growing needs as clinical investigations of Alzheimer’s disease (AD) in large and heterogeneous population increase. General tools allowing diagnostic regardless of recording sites, such as different hospitals, are essential and if combined to inexpensive non-invasive methods could critically improve mass screening of subjects with AD. In this study, we applied three state of the art multiway array decomposition (MAD) methods to extract features from electroencephalograms (EEGs) of AD patients obtained from multiple sites. In comparison to MAD, spectral-spatial average filter (SSFs) of control and AD subjects were used as well as a common blind source separation method, algorithm for multiple unknown signal extraction (AMUSE). We trained a feed-forward multilayer perceptron (MLP) to validate and optimize AD classification from two independent databases. Using a third EEG dataset, we demonstrated that features extracted from MAD outperformed features obtained from SSFs AMUSE in terms of root mean squared error (RMSE) and reaching up to 100% of accuracy in test condition. We propose that MAD maybe a useful tool to extract features for AD diagnosis offering great generalization across multi-site databases and opening doors to the discovery of new characterization of the disease.ca_ES
dc.formatapplication/pdf
dc.format.extent17 p.ca_ES
dc.language.isoengca_ES
dc.publisherElsevierca_ES
dc.rights(c) 2012 Elsevier. Published article is available at: http://dx.doi.org/10.1016/j.jneumeth.2012.03.005
dc.subject.otherAlzheimer, Malaltia d'ca_ES
dc.titleMultiway Array Decomposition Analysis of EEGs in Alzheimer’s Diseaseca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.doihttps://doi.org/10.1016/j.jneumeth.2012.03.005
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.jneumeth.2012.03.005
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.type.versioninfo:eu-repo/acceptedVersionca_ES
dc.indexacioIndexat a SCOPUS
dc.indexacioIndexat a WOS/JCRca_ES


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix