Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributor.authorMonte-Moreno, Enric
dc.contributor.authorChetouani, Mohamed
dc.contributor.authorFaundez-Zanuy, Marcos
dc.contributor.authorSolé-Casals, Jordi
dc.date.accessioned2013-02-13T09:00:04Z
dc.date.available2013-02-13T09:00:04Z
dc.date.created2009
dc.date.issued2009
dc.identifier.citationMONTE-MORENO, Enric i altres . "Maximum likelihood linear programming data fusion for speaker recognition". A: Speech Communication, 2009, vol. 51, núm. 9, pàg. 820-830ca_ES
dc.identifier.issn0167-6393
dc.identifier.urihttp://hdl.handle.net/10854/2075
dc.description.abstractBiometric system performance can be improved by means of data fusion. Several kinds of information can be fused in order to obtain a more accurate classification (identification or verification) of an input sample. In this paper we present a method for computing the weights in a weighted sum fusion for score combinations, by means of a likelihood model. The maximum likelihood estimation is set as a linear programming problem. The scores are derived from a GMM classifier working on a different feature extractor. Our experimental results assesed the robustness of the system in front a changes on time (different sessions) and robustness in front a change of microphone. The improvements obtained were significantly better (error bars of two standard deviations) than a uniform weighted sum or a uniform weighted product or the best single classifier. The proposed method scales computationaly with the number of scores to be fussioned as the simplex method for linear programming.ca_ES
dc.formatapplication/pdf
dc.format.extent19 p.ca_ES
dc.language.isoengca_ES
dc.publisherElsevierca_ES
dc.rights(c) 2009 Elsevier. Published article is available at: http://dx.doi.org/10.1016/j.specom.2008.05.009
dc.subject.otherVeu, Processament deca_ES
dc.titleMaximum likelihood Linear Programming Data Fusion for Speaker Recognitionca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.doihttps://doi.org/10.1016/j.specom.2008.05.009
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.specom.2008.05.009
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.type.versioninfo:eu-repo/acceptedVersionca_ES
dc.indexacioIndexat a SCOPUS
dc.indexacioIndexat a WOS/JCRca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint