Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributorInternational Work-Conference on Artificial Neural Networks (8ena : Barcelona : 2005)
dc.contributor.authorComas, C.
dc.contributor.authorMonte-Moreno, Enric
dc.contributor.authorSolé-Casals, Jordi
dc.date.accessioned2013-02-13T13:01:14Z
dc.date.available2013-02-13T13:01:14Z
dc.date.created2005
dc.date.issued2005
dc.identifier.citationCabestany, A. Prieto, F. Sandoval, editors. A robust multiple feature approach to endpoint detection in car environment based on advanced classifiers. Computational intelligence and bioinspired systems, proceedings; LECTURE NOTES IN COMPUTER SCIENCE; 8th international work-conference on artificial neural networks; JUN 08-10, 2005; BERLIN; HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY: SPRINGER-VERLAG BERLIN; 2005. NR: 7; TC: 0; J9: LECT NOTE COMPUT SCI; PG: 7; GA: BCO15.ca_ES
dc.identifier.isbn978-3-540-26208-4
dc.identifier.urihttp://hdl.handle.net/10854/2077
dc.description.abstractIn this paper we propose an endpoint detection system based on the use of several features extracted from each speech frame, followed by a robust classifier (i.e Adaboost and Bagging of decision trees, and a multilayer perceptron) and a finite state automata (FSA). We present results for four different classifiers. The FSA module consisted of a 4-state decision logic that filtered false alarms and false positives. We compare the use of four different classifiers in this task. The look ahead of the method that we propose was of 7 frames, which are the number of frames that maximized the accuracy of the system. The system was tested with real signals recorded inside a car, with signal to noise ratio that ranged from 6 dB to 30dB. Finally we present experimental results demonstrating that the system yields robust endpoint detection.ca_ES
dc.formatapplication/pdf
dc.format.extent8 p.ca_ES
dc.language.isoengca_ES
dc.publisherSpringerca_ES
dc.rights(c) Springer, 2005
dc.rightsTots els drets reservatsca_ES
dc.subject.otherVeu, Processament deca_ES
dc.titleA Robust Multiple Feature Approach To Endpoint Detection In Car Environment Based On Advanced Classifiersca_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectca_ES
dc.relation.publisherversionhttp://www.springer.com/computer/theoretical+computer+science/book/978-3-540-26208-4
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint