Mostrar el registro sencillo del ítem
A Robust Multiple Feature Approach To Endpoint Detection In Car Environment Based On Advanced Classifiers
dc.contributor | Universitat de Vic. Escola Politècnica Superior | |
dc.contributor | Universitat de Vic. Grup de Recerca en Tecnologies Digitals | |
dc.contributor | International Work-Conference on Artificial Neural Networks (8ena : Barcelona : 2005) | |
dc.contributor.author | Comas, C. | |
dc.contributor.author | Monte-Moreno, Enric | |
dc.contributor.author | Solé-Casals, Jordi | |
dc.date.accessioned | 2013-02-13T13:01:14Z | |
dc.date.available | 2013-02-13T13:01:14Z | |
dc.date.created | 2005 | |
dc.date.issued | 2005 | |
dc.identifier.citation | Cabestany, A. Prieto, F. Sandoval, editors. A robust multiple feature approach to endpoint detection in car environment based on advanced classifiers. Computational intelligence and bioinspired systems, proceedings; LECTURE NOTES IN COMPUTER SCIENCE; 8th international work-conference on artificial neural networks; JUN 08-10, 2005; BERLIN; HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY: SPRINGER-VERLAG BERLIN; 2005. NR: 7; TC: 0; J9: LECT NOTE COMPUT SCI; PG: 7; GA: BCO15. | ca_ES |
dc.identifier.isbn | 978-3-540-26208-4 | |
dc.identifier.uri | http://hdl.handle.net/10854/2077 | |
dc.description.abstract | In this paper we propose an endpoint detection system based on the use of several features extracted from each speech frame, followed by a robust classifier (i.e Adaboost and Bagging of decision trees, and a multilayer perceptron) and a finite state automata (FSA). We present results for four different classifiers. The FSA module consisted of a 4-state decision logic that filtered false alarms and false positives. We compare the use of four different classifiers in this task. The look ahead of the method that we propose was of 7 frames, which are the number of frames that maximized the accuracy of the system. The system was tested with real signals recorded inside a car, with signal to noise ratio that ranged from 6 dB to 30dB. Finally we present experimental results demonstrating that the system yields robust endpoint detection. | ca_ES |
dc.format | application/pdf | |
dc.format.extent | 8 p. | ca_ES |
dc.language.iso | eng | ca_ES |
dc.publisher | Springer | ca_ES |
dc.rights | (c) Springer, 2005 | |
dc.rights | Tots els drets reservats | ca_ES |
dc.subject.other | Veu, Processament de | ca_ES |
dc.title | A Robust Multiple Feature Approach To Endpoint Detection In Car Environment Based On Advanced Classifiers | ca_ES |
dc.type | info:eu-repo/semantics/conferenceObject | ca_ES |
dc.relation.publisherversion | http://www.springer.com/computer/theoretical+computer+science/book/978-3-540-26208-4 | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Documents de Congressos [174]