Mostrar el registro sencillo del ítem

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributorWorld Automation Congress (6è: 2004 : Sevilla)
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorJutten, Christian
dc.date.accessioned2013-02-18T09:01:07Z
dc.date.available2013-02-18T09:01:07Z
dc.date.created2004
dc.date.issued2004
dc.identifier.citationSOLÉ CASALS, J. and JUTTEN, C., 2004. Post-nonlinear mixtures and beyond, M. JAMSHIDI, L. FOULLOY, A. ELKAMEL and J.S. JAMSHIDI, eds. In: Intelligent Automations and Control: Trends Principles, and Applications, Vol 16; TSI PRESS SERIES; 5th International Symposium on Intelligent Automation and Control/9th International Symposium on Manufacturing and Applications held at the 6th Biannual World Automation Congress, JUN 28-JUL 01, 2004 2004, TSI PRESS, pp. 67-74.ca_ES
dc.identifier.isbn9781889335223
dc.identifier.urihttp://hdl.handle.net/10854/2088
dc.description.abstractAlthough sources in general nonlinear mixturm arc not separable iising only statistical independence, a special and realistic case of nonlinear mixtnres, the post nonlinear (PNL) mixture is separable choosing a suited separating system. Then, a natural approach is based on the estimation of tho separating Bystem parameters by minimizing an indcpendence criterion, like estimated mwce mutual information. This class of methods requires higher (than 2) order statistics, and cannot separate Gaarsian sources. However, use of [weak) prior, like source temporal correlation or nonstationarity, leads to other source separation Jgw rithms, which are able to separate Gaussian sourra, and can even, for a few of them, works with second-order statistics. Recently, modeling time correlated s011rces by Markov models, we propose vcry efficient algorithms hmed on minimization of the conditional mutual information. Currently, using the prior of temporally correlated sources, we investigate the fesihility of inverting PNL mixtures with non-bijectiw non-liacarities, like quadratic functions. In this paper, we review the main ICA and BSS results for riunlinear mixtures, present PNL models and algorithms, and finish with advanced resutts using temporally correlated snu~smca_ES
dc.formatapplication/pdf
dc.format.extent8 p.ca_ES
dc.language.isoengca_ES
dc.publisherTSI Pressca_ES
dc.rights(c) TSI Press, 2004
dc.rightsTots els drets reservatsca_ES
dc.subject.otherRobòticaca_ES
dc.subject.otherControl automàticca_ES
dc.titlePost-Nonlinear Mixtures and Beyondca_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir