Mostrar el registro sencillo del ítem
A decreasing rearrangement for functions on homogeneous trees
dc.contributor | Universitat de Vic. Facultat d'Empresa i Comunicació | |
dc.contributor.author | Garcia Domingo, Josep Lluís | |
dc.contributor.author | Soria, Javier | |
dc.date.accessioned | 2013-05-15T11:00:57Z | |
dc.date.available | 2013-05-15T11:00:57Z | |
dc.date.created | 2005 | |
dc.date.issued | 2005 | |
dc.identifier.citation | Garcia Domingo, Josep Lluis, and J. Soria. "A Decreasing Rearrangement for Functions on Homogeneous Trees." European Journal of Combinatorics 26.2 (2005): 201-25. | ca_ES |
dc.identifier.issn | 0195-6698 | |
dc.identifier.uri | http://hdl.handle.net/10854/2257 | |
dc.description.abstract | We introduce a new decreasing rearrangement for functions defined on a homogeneous tree, which enjoys very intuitive and natural properties. The idea is to iterate, with respect to a particular ordering, the usual one dimensional rearrangement on each geodesic. After showing the canonicity of this definition and the axioms of symmetrization, we prove our main result: the geometric and analytic definitions, in terms of the “layer cake” formula, agree. | en |
dc.format | application/pdf | |
dc.format.extent | 25 p. | ca_ES |
dc.language.iso | eng | ca_ES |
dc.publisher | Elsevier | ca_ES |
dc.rights | (c) 2005 Elsevier. Published article is available at: http://dx.doi.org/10.1016/j.ejc.2004.03.004 | |
dc.subject.other | Arbres (Teoria dels grafs) | ca_ES |
dc.title | A decreasing rearrangement for functions on homogeneous trees | en |
dc.type | info:eu-repo/semantics/article | ca_ES |
dc.identifier.doi | https://doi.org/10.1016/j.ejc.2004.03.004 | |
dc.relation.publisherversion | http://www.sciencedirect.com/science/article/pii/S0195669804000514 | |
dc.rights.accessRights | info:eu-repo/semantics/closedAccess | ca_ES |
dc.type.version | info:eu-repo/publishedVersion | ca_ES |
dc.indexacio | Indexat a SCOPUS | |
dc.indexacio | Indexat a WOS/JCR | ca_ES |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Articles [1.531]