Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributor.authorLopez-de-Ipiña, Karmele
dc.contributor.authorAlonso, Jesús B.
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorBarroso, Nora
dc.contributor.authorHenriquez, P.
dc.contributor.authorFaundez-Zanuy, Marcos
dc.contributor.authorTravieso, Carlos M.
dc.contributor.authorEcay-Torres, Miriam
dc.contributor.authorMartinez-Lage, Pablo
dc.contributor.authorEgiraun, Harkaitz
dc.date.accessioned2013-09-18T12:32:43Z
dc.date.available2015-01-08T00:02:56Z
dc.date.created2013
dc.date.issued2013
dc.identifier.citationLopez-de-Ipina, K., Alonso, J. B., Sole-Casals, J., Barroso, N., Henriquez, P., Faundez-Zanuy, M., et al. (2015). On automatic diagnosis of alzheimer's disease based on spontaneous speech analysis and emotional temperature. Cognitive Computation, 7(1), 44-55.ca_ES
dc.identifier.issn1866-9956
dc.identifier.urihttp://hdl.handle.net/10854/2351
dc.description.abstractAlzheimer's disease is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. Therefore it is one of the most active research areas today. Alzheimer's is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a post-mortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early Alzheimer's disease detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of Alzheimer’s disease by non-invasive methods. The purpose is to examine, in a pilot study, the potential of applying Machine Learning algorithms to speech features obtained from suspected Alzheimer sufferers in order help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: Spontaneous Speech and Emotional Response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of Alzheimer’s disease patients.ca_ES
dc.formatapplication/pdf
dc.format.extent18 p.ca_ES
dc.language.isoengca_ES
dc.publisherSpringerca_ES
dc.rights(c) Springer (The original publication is available at www.springerlink.com)
dc.rightsTots els drets reservatsca_ES
dc.subject.otherAlzheimer, Malaltia d'ca_ES
dc.subject.otherProcessament de la parlaca_ES
dc.titleOn Automatic Diagnosis of Alzheimer's Disease based on Spontaneous Speech Analysis and Emotional Temperatureca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.embargo.terms12 mesos
dc.identifier.doihttps://doi.org/10.1007/s12559-013-9229-9
dc.relation.publisherversionhttp://link.springer.com/article/10.1007%2Fs12559-013-9229-9
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.type.versioninfo:eu-repo/acceptedVersionca_ES
dc.indexacioIndexat a WOS/JCR
dc.indexacioIndexat a SCOPUSca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint