Mostra el registre parcial de l'element

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Medi Ambient i Alimentació
dc.contributorInternational Conference on Coastal Engineering (2012: 33 : Santander)
dc.contributor.authorFalqués, Albert
dc.contributor.authorVan den Berg, Niels
dc.contributor.authorRibas Prats, Francesca
dc.contributor.authorCaballeria, Miquel
dc.date.accessioned2013-10-25T11:38:50Z
dc.date.available2013-10-25T11:38:50Z
dc.date.created2012
dc.date.issued2012
dc.identifier.citationFalques, A. [et al.]. What determines the wavelength of self-organized shoreline sand waves?. A: International Conference on Coastal Engineering. "Proceedings of 33rd Conference on Coastal Engineering, Santander, Spain, 2012". Santander: 2012, p. 1-12.ca_ES
dc.identifier.isbn978-098961119
dc.identifier.urihttp://hdl.handle.net/10854/2405
dc.description.abstractShoreline undulations extending into the bathymetric contours with a length scale larger than that of the rhythmic surf zone bars are referred to as shoreline sand waves. Many observed undulations along sandy coasts display a wavelength in the order 1-7 km. Several models that are based on the hypothesis that sand waves emerge from a morphodynamic instability in case of very oblique wave incidence predict this range of wavelengths. Here we investigate the physical reasons for the wavelength selection and the main parametric trends of the wavelength in case of sand waves arising from such instability. It is shown that the existence of a minimum wavelength depends on an interplay between three factors affecting littoral drift: (A) the angle of wave fronts relative to local shoreline, which tends to cause maximum transport at the downdrift flank of the sand wave, (B) the refractive energy spreading which tends to cause maximum transport at the updrift flank and (C) wave focusing (de-focusing) by the capes (bays), which tends to cause maximum transport at the crest or slightly downdrift of it. Processes A and C cause decay of the sand waves while process B causes their growth. For low incidence angles, B is very weak so that a rectilinear shoreline is stable. For large angles and long sand waves, B is dominant and causes the growth of sand waves. For large angles and short sand waves C is dominant and the sand waves decay. Thus, wavelength selection depends on process C, which essentially depends on shoreline curvature. The growth rate of very long sand waves is weak because the alongshore gradients in sediment transport decrease with the wavelength. This is why there is an optimum or dominant wavelength. It is found that sand wave wavelength scales with λ0/β where λ0 is the water wave wavelength in deep water and β is the mean bed slope from shore to the wave base.en
dc.formatapplication/pdf
dc.format.extent12 p.ca_ES
dc.language.isoengca_ES
dc.rights(c) ICCE, 2012
dc.rightsTots els drets reservatsca_ES
dc.subject.otherPlatges -- Erosióca_ES
dc.titleWhat determines the wavelength of self-organized shoreline sand waves?en
dc.typeinfo:eu-repo/semantics/conferenceObjectca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix