Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Interaccions Digitals
dc.contributorInternational Conference on Non-Linear Speech Processing NOLISP (2013 : Bèlgica)
dc.contributor.authorLopez-de-Ipiña, Karmele
dc.contributor.authorEgiraun, Harkaitz
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorEcay-Torres, Miriam
dc.contributor.authorEzeiza, Aitzol
dc.contributor.authorBarroso, Nora
dc.contributor.authorMartinez-Lage, Pablo
dc.contributor.authorMartinez de Lizardui, Unai
dc.date.accessioned2014-01-10T13:43:55Z
dc.date.available2014-01-10T13:43:55Z
dc.date.created2013
dc.date.issued2013
dc.identifier.citationLópez-De-Ipiña, K., Egiraun, H., Sole-Casals, J., Ecay, M., Ezeiza, A., Barroso, N., . . . Martinez-De-Lizardui, U. (2013). Feature extraction approach based on fractal dimension for spontaneous speech modelling oriented to alzheimer disease diagnosis A: Lecture Notes in Computer Science, 7911 LNAI, pp. 144-151ca_ES
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/10854/2626
dc.description.abstractAlzheimer's disease (AD) is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. The purpose of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from non-invasive intelligent methods. The methods selected in this case are speech biomarkers oriented to Spontaneous Speech. Thus the main goal of the present work is feature search in Spontaneous Speech oriented to pre-clinical evaluation for the definition of test for AD diagnosis. Nowadays our feature set offers some hopeful conclusions but fails to capture the nonlinear dynamics of speech that are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful when training data is scarce. In this work, the Fractal Dimension (FD) of the observed time series is combined with lineal parameters in the feature vector in order to enhance the performance of the original system.ca_ES
dc.formatapplication/pdf
dc.format.extent8 p.ca_ES
dc.language.isoengca_ES
dc.publisherSpringerca_ES
dc.rights(c) Springer (The original publication is available at www.springerlink.com)
dc.rightsTots els drets reservatsca_ES
dc.subject.otherAlzheimer, Malaltia d'ca_ES
dc.subject.otherProcessament de la parlaca_ES
dc.titleFeature extraction approach based on fractal dimension for spontaneous speech modelling oriented to alzheimer disease diagnosisca_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectca_ES
dc.identifier.doihttps://doi.org/10.1007/978-3-642-38847-7-19
dc.relation.publisherversionhttp://link.springer.com/chapter/10.1007%2F978-3-642-38847-7_19
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccessca_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint