Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributor.authorGallego Jutglà, Esteve
dc.contributor.authorElgendi, Mohamed
dc.contributor.authorVialatte, François B.
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorCichocki, Andrej
dc.contributor.authorJaeseung, Jeonga
dc.contributor.authorDauwels, Justin
dc.contributor.authorLatchoumane, Charles-François V.
dc.date.accessioned2014-02-07T11:29:25Z
dc.date.available2014-02-07T11:29:25Z
dc.date.created2012
dc.date.issued2012
dc.identifier.citationGallego-Jutgla, E., Elgendi, M., Vialatte, F., Solé Casals, J., Cichocki, A., Latchoumane, C., et al. (2012). Diagnosis of Alzheimer's Disease from EEG by Means of Synchrony Measures in Optimized Frequency Bands. 2012 Annual International Conference of the Ieee Engineering in Medicine and Biology Society (Embc), , 4266-4270.ca_ES
dc.identifier.issn1557-170X
dc.identifier.urihttp://hdl.handle.net/10854/2673
dc.description.abstractSeveral clinical studies have reported that EEG synchrony is affected by Alzheimer’s disease (AD). In this paper a frequency band analysis of AD EEG signals is presented, with the aim of improving the diagnosis of AD using EEG signals. In this paper, multiple synchrony measures are assessed through statistical tests (Mann–Whitney U test), including correlation, phase synchrony and Granger causality measures. Moreover, linear discriminant analysis (LDA) is conducted with those synchrony measures as features. For the data set at hand, the frequency range (5-6Hz) yields the best accuracy for diagnosing AD, which lies within the classical theta band (4-8Hz). The corresponding classification error is 4.88% for directed transfer function (DTF) Granger causality measure. Interestingly, results show that EEG of AD patients is more synchronous than in healthy subjects within the optimized range 5-6Hz, which is in sharp contrast with the loss of synchrony in AD EEG reported in many earlier studies. This new finding may provide new insights about the neurophysiology of AD. Additional testing on larger AD datasets is required to verify the effectiveness of the proposed approach.ca_ES
dc.formatapplication/pdf
dc.format.extent5 p.ca_ES
dc.language.isoengca_ES
dc.publisherInstitute of Electrical and Electronic Engineers, IEEEca_ES
dc.rights(c) IEEE, 2012 Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.rightsTots els drets reservatsca_ES
dc.subject.otherAlzheimer, Malaltia d'ca_ES
dc.subject.otherTractament del senyalca_ES
dc.titleDiagnosis of Alzheimer’s Disease from EEG by Means of Synchrony Measures in Optimized Frequency Bandsca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.relation.publisherversionhttp://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=917796&tag=1
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.type.versioninfo:eu-repo/acceptedVersionca_ES
dc.indexacioIndexat a SCOPUS
dc.indexacioIndexat a WOS/JCRca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint