Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributorInternational Conference on Spoken Language Processing ( 6ena : 2000 : Pekín)
dc.contributorICSLP2000
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorJutten, Christian
dc.contributor.authorTaleb, Anisse
dc.date.accessioned2014-03-19T11:12:11Z
dc.date.available2014-03-19T11:12:11Z
dc.date.created2000
dc.date.issued2000
dc.identifier.urihttp://hdl.handle.net/10854/2782
dc.description.abstractThe prediction filters are well known models for signal estimation, in communications, control and many others areas. The classical method for deriving linear prediction coding (LPC) filters is often based on the minimization of a mean square error (MSE). Consequently, second order statistics are only required, but the estimation is only optimal if the residue is independent and identically distributed (iid) Gaussian. In this paper, we derive the ML estimate of the prediction filter. Relationships with robust estimation of auto-regressive (AR) processes, with blind deconvolution and with source separation based on mutual information minimization are then detailed. The algorithm, based on the minimization of a high-order statistics criterion, uses on-line estimation of the residue statistics. Experimental results emphasize on the interest of this approach.en
dc.formatapplication/pdf
dc.format.extent6 p.ca_ES
dc.language.isoengca_ES
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonsca_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ca_ES
dc.subject.otherProcessament de la parlaca_ES
dc.titleSource separation techniques applied to linear predictionen
dc.typeinfo:eu-repo/semantics/conferenceObjectca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Aquest document està subjecte a aquesta llicència Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint