Mostrar el registro sencillo del ítem

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributorInternational Symposium on Independent Component Analysis and Blind Signal Separation ( 4art : 2003 : Nara)
dc.contributorICA2003
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorBabaie-Zadeh, Massoud
dc.contributor.authorJutten, Christian
dc.contributor.authorPham, Dinh-Tuan
dc.date.accessioned2014-03-19T12:09:39Z
dc.date.available2014-03-19T12:09:39Z
dc.date.created2003
dc.date.issued2003
dc.identifier.urihttp://hdl.handle.net/10854/2786
dc.description.abstractThis paper proposes a very simple method for increasing the algorithm speed for separating sources from PNL mixtures or invertingWiener systems. The method is based on a pertinent initialization of the inverse system, whose computational cost is very low. The nonlinear part is roughly approximated by pushing the observations to be Gaussian; this method provides a surprisingly good approximation even when the basic assumption is not fully satisfied. The linear part is initialized so that outputs are decorrelated. Experiments shows the impressive speed improvement.en
dc.formatapplication/pdf
dc.format.extent6 p.ca_ES
dc.language.isoengca_ES
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonsca_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ca_ES
dc.subject.otherTractament del senyalca_ES
dc.titleImproving algorithm speed in PNL mixture separation and Wiener system inversionen
dc.typeinfo:eu-repo/semantics/conferenceObjectca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Aquest document està subjecte a aquesta llicència Creative Commons
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir