Mostra el registre parcial de l'element

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributorInternational Conference on Bio-inspired Systems and Signal Proceesing (3a: 2010: València)
dc.contributorBIOSIGNALS 2010
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorVialatte, François B.
dc.contributor.authorPantel, J.
dc.contributor.authorPrvulovic, D.
dc.contributor.authorHaenschel, C.
dc.contributor.authorCichocki, Andrej
dc.date.accessioned2014-04-07T12:06:49Z
dc.date.available2014-04-07T12:06:49Z
dc.date.created2010
dc.date.issued2010
dc.identifier.citationSole-Casals, J., Vialatte, F., Pantel, J., Prvulovic, D., Haenschel, C., & Cichocki, A. (2010). ICA cleaning procedure for EEG signals analysis: Application to Alzheimer's disease detection. , València 485-490.ca_ES
dc.identifier.urihttp://hdl.handle.net/10854/2857
dc.description.abstractTo develop systems in order to detect Alzheimer’s disease we want to use EEG signals. Available database is raw, so the first step must be to clean signals properly. We propose a new way of ICA cleaning on a database recorded from patients with Alzheimer's disease (mildAD, early stage). Two researchers visually inspected all the signals (EEG channels), and each recording's least corrupted (artefact-clean) continuous 20 sec interval were chosen for the analysis. Each trial was then decomposed using ICA. Sources were ordered using a kurtosis measure, and the researchers cleared up to seven sources per trial corresponding to artefacts (eye movements, EMG corruption, EKG, etc), using three criteria: (i) Isolated source on the scalp (only a few electrodes contribute to the source), (ii) Abnormal wave shape (drifts, eye blinks, sharp waves, etc.), (iii) Source of abnormally high amplitude (􀂕�100 􀈝�V). We then evaluated the outcome of this cleaning by means of the classification of patients using multilayer perceptron neural networks. Results are very satisfactory and performance is increased from 50.9% to 73.1% correctly classified data using ICA cleaning procedure.en
dc.formatapplication/pdf
dc.format.extent6 p.ca_ES
dc.language.isoengca_ES
dc.rightsTots els drets reservatsca_ES
dc.subject.otherAlzheimer, Malaltia d'ca_ES
dc.titleICA Cleaning procedure for EEG signals analysis: application to Alzheimer's disease detectionen
dc.typeinfo:eu-repo/semantics/conferenceObjectca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix