Mostra el registre parcial de l'element
ICA Cleaning procedure for EEG signals analysis: application to Alzheimer's disease detection
dc.contributor | Universitat de Vic. Escola Politècnica Superior | |
dc.contributor | Universitat de Vic. Grup de Recerca en Tecnologies Digitals | |
dc.contributor | International Conference on Bio-inspired Systems and Signal Proceesing (3a: 2010: València) | |
dc.contributor | BIOSIGNALS 2010 | |
dc.contributor.author | Solé-Casals, Jordi | |
dc.contributor.author | Vialatte, François B. | |
dc.contributor.author | Pantel, J. | |
dc.contributor.author | Prvulovic, D. | |
dc.contributor.author | Haenschel, C. | |
dc.contributor.author | Cichocki, Andrej | |
dc.date.accessioned | 2014-04-07T12:06:49Z | |
dc.date.available | 2014-04-07T12:06:49Z | |
dc.date.created | 2010 | |
dc.date.issued | 2010 | |
dc.identifier.citation | Sole-Casals, J., Vialatte, F., Pantel, J., Prvulovic, D., Haenschel, C., & Cichocki, A. (2010). ICA cleaning procedure for EEG signals analysis: Application to Alzheimer's disease detection. , València 485-490. | ca_ES |
dc.identifier.uri | http://hdl.handle.net/10854/2857 | |
dc.description.abstract | To develop systems in order to detect Alzheimer’s disease we want to use EEG signals. Available database is raw, so the first step must be to clean signals properly. We propose a new way of ICA cleaning on a database recorded from patients with Alzheimer's disease (mildAD, early stage). Two researchers visually inspected all the signals (EEG channels), and each recording's least corrupted (artefact-clean) continuous 20 sec interval were chosen for the analysis. Each trial was then decomposed using ICA. Sources were ordered using a kurtosis measure, and the researchers cleared up to seven sources per trial corresponding to artefacts (eye movements, EMG corruption, EKG, etc), using three criteria: (i) Isolated source on the scalp (only a few electrodes contribute to the source), (ii) Abnormal wave shape (drifts, eye blinks, sharp waves, etc.), (iii) Source of abnormally high amplitude (�100 �V). We then evaluated the outcome of this cleaning by means of the classification of patients using multilayer perceptron neural networks. Results are very satisfactory and performance is increased from 50.9% to 73.1% correctly classified data using ICA cleaning procedure. | en |
dc.format | application/pdf | |
dc.format.extent | 6 p. | ca_ES |
dc.language.iso | eng | ca_ES |
dc.rights | Tots els drets reservats | ca_ES |
dc.subject.other | Alzheimer, Malaltia d' | ca_ES |
dc.title | ICA Cleaning procedure for EEG signals analysis: application to Alzheimer's disease detection | en |
dc.type | info:eu-repo/semantics/conferenceObject | ca_ES |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca_ES |
Fitxers en aquest element
Aquest element apareix en la col·lecció o col·leccions següent(s)
-
Documents de Congressos [174]