Mostra el registre parcial de l'element

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributorEuropean Signal Processing Conference (11è : 2002: Toulouse)
dc.contributorEUSIPCO 2002
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorMonte-Moreno, Enric
dc.date.accessioned2014-04-09T12:20:32Z
dc.date.available2014-04-09T12:20:32Z
dc.date.created2002
dc.date.issued2002
dc.identifier.urihttp://hdl.handle.net/10854/2864
dc.description.abstractThe linear prediction coding of speech is based in the assumption that the generation model is autoregresive. In this paper we propose a structure to cope with the nonlinear effects presents in the generation of the speech signal. This structure will consist of two stages, the first one will be a classical linear prediction filter, and the second one will model the residual signal by means of two nonlinearities between a linear filter. The coefficients of this filter are computed by means of a gradient search on the score function. This is done in order to deal with the fact that the probability distribution of the residual signal still is not gaussian. This fact is taken into account when the coefficients are computed by a ML estimate. The algorithm based on the minimization of a high-order statistics criterion, uses on-line estimation of the residue statistics and is based on blind deconvolution of Wiener systems [1]. Improvements in the experimental results with speech signals emphasize on the interest of this approach.ca_ES
dc.formatapplication/pdf
dc.format.extent4 p.ca_ES
dc.language.isoengca_ES
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonsca_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/ca_ES
dc.subject.otherProcessament de la parlaca_ES
dc.titleNonlinear prediction based on score functionca_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Aquest document està subjecte a aquesta llicència Creative Commons
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc-nd/3.0/es/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix