Interval censoring: identifiability and the constant-sum property
View/Open
Other authors
Publication date
2007ISSN
1464-3510
Abstract
The constant-sum property given in Oller et al. (2004) for censoring models justifies the
use of a simplified likelihood to obtain the nonparametric maximum likelihood estimator of
the lifetime distribution. In this paper we study the relevance of the constant-sum property
in the identifiability of the lifetime distribution. We show that the lifetime distribution
is not identifiable outside the class of constant-sum models. We also show that the
lifetime probabilities assigned to the observable intervals are identifiable inside the class of
constant-sum models. We illustrate all these notions with several examples.
Document Type
Article
Language
English
Keywords
Anàlisi de supervivència (Estadística)
Pages
10 p.
Publisher
Oxford University Press
Citation
Oller Piquer, R., Gomez, G., & Calle Rosingana, M. L. (2007). Interval
censoring: Identifiability and the constant-sum property. Biometrika,
94/(1), 61-70.
This item appears in the following Collection(s)
- Articles [1389]
Rights
(c) Oxford University Press, 2007
Tots els drets reservats