Mostrar el registro sencillo del ítem

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributorInternational Joint Conference on Computational Intelligence (4rt : 2012 : Barcelona, Catalunya)
dc.contributor.authorBartés i Serrallonga, Manel
dc.contributor.authorSerra Grabulosa, Josep M.
dc.contributor.authorAdan, Ana
dc.contributor.authorFalcón, Carles
dc.contributor.authorBargalló, Núria
dc.contributor.authorSolé-Casals, Jordi
dc.date.accessioned2014-04-30T10:41:03Z
dc.date.available2014-04-30T10:41:03Z
dc.date.created2012
dc.date.issued2012
dc.identifier.citationM. Bartés-Serrallonga, J. M. Serra-Grabulosa, A. Adan, C. Falcón, N. Bargalló and J. Solé- Casals, “Adaptive Smoothing Applied to fMRI Data”, Proceedings of IJCCI 2012. 4th International Joint Conference on Computational Intelligence. Barcelona (Spain). ISBN: 978-989-5868-33-4ca_ES
dc.identifier.isbn978-989-5868-33-4
dc.identifier.urihttp://hdl.handle.net/10854/3016
dc.descriptionIJCCI 2012ca_ES
dc.description.abstractOne problem of fMRI images is that they include some noise coming from many other sources like the heart beat, breathing and head motion artifacts. All these sources degrade the data and can cause wrong results in the statistical analysis. In order to reduce as much as possible the amount of noise and to improve signal detection, the fMRI data is spatially smoothed prior to the analysis. The most common and standardized method to do this task is by using a Gaussian filter. The principal problem of this method is that some regions may be under-smoothed, while others may be over-smoothed. This is caused by the fact that the extent of smoothing is chosen independently of the data and is assumed to be equal across the image. To avoid these problems, we suggest in our work to use an adaptive Wiener filter which smooths the images adaptively, performing a little smoothing where variance is large and more smoothing where the variance is small. In general, the results that we obtained with the adaptive filter are better than those obtained with the Gaussian kernel. In this paper we compare the effects of the smoothing with a Gaussian kernel and with an adaptive Wiener filter, in order to demonstrate the benefits of the proposed approach.ca_ES
dc.formatapplication/pdf
dc.format.extent7 p.ca_ES
dc.language.isoengca_ES
dc.publisherSciTePress - Science and Technology Publicationsca_ES
dc.rights(c) SciTePress - Science and Technology Publications
dc.rightsTots els drets reservatsca_ES
dc.subject.otherRessonància magnèticaca_ES
dc.titleAdaptive Smoothing Applied to fMRI Dataca_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccessca_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir