Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Bioinformàtica i Estadística Mèdica
dc.contributor.authorGómez, Guadalupe
dc.contributor.authorCalle, M. Luz
dc.contributor.authorEgea, José M.
dc.contributor.authorMuga, Robert
dc.date.accessioned2014-05-20T11:19:14Z
dc.date.available2014-05-20T11:19:14Z
dc.date.created2000
dc.date.issued2000
dc.identifier.citationGomez, G., Calle Rosingana, M. L., Egea, J. M., & Muga, R. (2000). Risk of HIV infection as a function of the duration of intravenous drug use: A non-parametric bayesian approach. Statistics in Medicine, 19(19), 2641-2656.ca_ES
dc.identifier.issn0277-6715
dc.identifier.urihttp://hdl.handle.net/10854/3061
dc.description.abstractWe analyse the elapsed time between intravenous (IV) drug initiation and HIV infection in a cohort of 972 injecting drug users attending a hospital detoxi cation unit. We use the time of seroconversion instead of the time of HIV infection because the date of HIV infection is rarely known and the gap between these two times is negligible (around one to three months). Although seroconversion time cannot be determined exactly, it can be inferred at least to within an interval. This seroconversion interval is determined from the dates of HIV antibody tests, if available. The data is consequently interval-censored. We estimate the distribution function of the elapsed time from IV drug initiation to seroconversion as well as the risk of seroconversion by means of a non-parametric Bayesian approach. The analysis is conducted according to the following four calendar periods: before or at 1980; between 1981 and 1985; between 1986 and 1991; after or at 1992 where the IV drug use was initiated. The methodology used is based on an alternating conditional sampling algorithm. The Bayesian approach allows not only the incorporation of prior beliefs about the distribution function, but also the analysis of the risk of seroconversion without assuming restrictive parametric models. Furthermore, the estimator for the distribution function is smooth and thus di erences between groups can be easily interpreted.ca_ES
dc.formatapplication/pdf
dc.format.extent16 p.ca_ES
dc.language.isoengca_ES
dc.publisherJohn Wiley & Sonsca_ES
dc.rights(c) Wiley [The definitive version is available at www3.interscience.wiley.com]
dc.rightsTots els drets reservatsca_ES
dc.subject.otherVIH (Virus)ca_ES
dc.subject.otherDroguesca_ES
dc.titleRisk of HIV infection as a function of the duration of intravenous drug use: a non-parametric Bayesian approachca_ES
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.relation.publisherversionhttp://onlinelibrary.wiley.com/doi/10.1002/1097-0258%2820001015%2919:19%3C2641::AID-SIM527%3E3.0.CO;2-P/abstract
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccessca_ES
dc.type.versioninfo:eu-repo/submittedVersionca_ES
dc.indexacioIndexat a SCOPUS
dc.indexacioIndexat a WOS/JCRca_ES


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint