Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Bioinformàtica i Estadística Mèdica
dc.contributor.authorLópez de Maturana, Evangelina
dc.contributor.authorChanock, Stephen
dc.contributor.authorPicornell, A.C.
dc.contributor.authorRothman, Nathaniel
dc.contributor.authorHerranz, J.
dc.contributor.authorCalle, M. Luz
dc.contributor.authorGarcía-Closas, Montserrat
dc.contributor.authorMarenne, Gaëlle
dc.contributor.authorBrand, A.
dc.contributor.authorTardón, Adonina
dc.contributor.authorCarrato, Alfredo
dc.contributor.authorSilverman, Debra T.
dc.contributor.authorKogevinas, Manolis
dc.contributor.authorGianola, D.
dc.contributor.authorReal, Francisco X.
dc.contributor.authorMalats i Riera, Núria
dc.date.accessioned2014-07-10T09:32:28Z
dc.date.available2014-07-10T09:32:28Z
dc.date.created2014
dc.date.issued2014
dc.identifier.citationDe Maturana, E. L., Chanok, S. J., Picornell, A. C., Rothman, N., Herranz, J., Calle Rosingana, M. L., et al. (2014). Whole genome prediction of bladder cancer risk with the bayesian LASSO. Genetic Epidemiology, 38(5), 467-476.ca_ES
dc.identifier.issn10982272
dc.identifier.urihttp://hdl.handle.net/10854/3226
dc.description.abstractTo build a predictive model for urothelial carcinoma of the bladder (UCB) risk combining both genomic and nongenomic data, 1,127 cases and 1,090 controls from the Spanish Bladder Cancer/EPICURO study were genotyped using the HumanHap 1M SNP array. After quality control filters, genotypes from 475,290 variants were available. Nongenomic information comprised age, gender, region, and smoking status. Three Bayesian threshold models were implemented including: (1) only genomic information, (2) only nongenomic data, and (3) both sources of information. The three models were applied to the whole population, to only nonsmokers, to male smokers, and to extreme phenotypes to potentiate the UCB genetic component. The area under the ROC curve allowed evaluating the predictive ability of each model in a 10-fold cross-validation scenario. Smoking status showed the highest predictive ability of UCB risk (AUCtest = 0.62). On the other hand, the AUC of all genetic variants was poorer (0.53). When the extreme phenotype approach was applied, the predictive ability of the genomic model improved 15%. This study represents a first attempt to build a predictive model for UCB risk combining both genomic and nongenomic data and applying state-of-the-art statistical approaches. However, the lack of genetic relatedness among individuals, the complexity of UCB etiology, as well as a relatively small statistical power, may explain the low predictive ability for UCB risk. The study confirms the difficulty of predicting complex diseases using genetic data, and suggests the limited translational potential of findings from this type of data into public health interventions. © 2014 WILEY PERIODICALS, INC.en
dc.description.sponsorshipThe work was partially supported by the Fondo de Investigacion Sanitaria, Instituto de Salud Carlos III (G03/174, 00/0745, PI051436, PI061614, PI09-02102, G03/174, and Sara Borrell fellowship to E. L. M.), Spain; Fundacio la Marato de TV3 (#050830); Red Tematica de Investigacion Cooperativa en Cancer (RTICC, (RTICC, #C03/009, #RD06/0020, and #RD12/0036/0050), Instituto de Salud Carlos III (ISCIII), Spanish Ministry of Economy and Competitiveness & European Regional Development Fund (ERDF) "Una manera de hacer Europa"); Asociacion Espanola Contra el Cancer (AECC); EU-FP7-201663-UROMOL; and NIH-RO1-CA089715 and CA34627; and by the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA.
dc.formatapplication/pdf
dc.format.extent10 p.ca_ES
dc.language.isoengca_ES
dc.publisherWileyca_ES
dc.rightsTots els drets reservatsca_ES
dc.rights(c) Wiley [The definitive version is available at www3.interscience.wiley.com]
dc.subject.otherCàncerca_ES
dc.subject.otherGenomesca_ES
dc.titleWhole Genome Prediction of Bladder Cancer Risk With the Bayesian LASSOen
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.doihttps://doi.org/10.1002/gepi.21809
dc.relation.publisherversionhttp://onlinelibrary.wiley.com/doi/10.1002/gepi.21809/abstract;jsessionid=C9F70EAE5654F4ED48FF554BC54F181E.f03t04
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccessca_ES
dc.type.versioninfo:eu-repo/publishedVersionca_ES
dc.indexacioIndexat a WOS/JCR
dc.indexacioIndexat a SCOPUSca_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/201663


Files in this item

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint