Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributorUniversitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorMunteanu, C.
dc.contributor.authorMartin, O.C.
dc.contributor.authorBarbé, F.
dc.contributor.authorQueipo, C.
dc.contributor.authorAmilibia, J.
dc.contributor.authorDurán-Cantolla, J.
dc.date.accessioned2014-09-17T10:43:30Z
dc.date.available2014-09-17T10:43:30Z
dc.date.created2014
dc.date.issued2014
dc.identifier.citationSolé-Casals, J., Munteanu, C., Martín, O. C., Barbé, F., Queipo, C., Amilibia, J., et al. (2014). Detection of severe obstructive sleep apnea through voice analysis. Applied Soft Computing, 23(0), 346-354.10.1016/j.asoc.2014.06.017ca_ES
dc.identifier.issn1568-4946
dc.identifier.urihttp://hdl.handle.net/10854/3266
dc.description.abstracttThis paper deals with the potential and limitations of using voice and speech processing to detect Obstruc-tive Sleep Apnea (OSA). An extensive body of voice features has been extracted from patients whopresent various degrees of OSA as well as healthy controls. We analyse the utility of a reduced set offeatures for detecting OSA. We apply various feature selection and reduction schemes (statistical rank-ing, Genetic Algorithms, PCA, LDA) and compare various classifiers (Bayesian Classifiers, kNN, SupportVector Machines, neural networks, Adaboost). S-fold crossvalidation performed on 248 subjects showsthat in the extreme cases (that is, 127 controls and 121 patients with severe OSA) voice alone is able todiscriminate quite well between the presence and absence of OSA. However, this is not the case withmild OSA and healthy snoring patients where voice seems to play a secondary role. We found that thebest classification schemes are achieved using a Genetic Algorithm for feature selection/reduction.en
dc.formatapplication/pdf
dc.format.extent9 p.ca_ES
dc.language.isoengca_ES
dc.publisherElsevier
dc.rights(c) 2012 Elsevier. Published article is available at: http://dx.doi.org/10.1016/j.asoc.2014.06.017
dc.rightsTots els drets reservatsca_ES
dc.subject.otherVeu, Processament deca_ES
dc.subject.otherApnea del son, Síndrome de l'ca_ES
dc.titleDetection of severe obstructive sleep apnea through voice analysisen
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.doihttps://doi.org/10.1016/j.asoc.2014.06.017
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S1568494614002816
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.type.versioninfo:eu-repo/acceptedVersionca_ES
dc.indexacioIndexat a WOS/JCR
dc.indexacioIndexat a SCOPUSca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint