Show simple item record

dc.contributorUniversitat de Vic. Càtedra de la Sida i Malalties Relacionades
dc.contributor.authorMuñoz-Moreno, José A.
dc.contributor.authorPérez Alvarez, Núria
dc.contributor.authorMuñoz-Murillo, A.
dc.contributor.authorPrats, A.
dc.contributor.authorGarolera, M.
dc.contributor.authorJurado, M.A.
dc.contributor.authorFumaz, C.R.
dc.contributor.authorNegredo, Eugenia
dc.contributor.authorFerrer, M.J.
dc.contributor.authorClotet, Bonaventura
dc.date.accessioned2014-10-06T07:39:02Z
dc.date.available2014-10-06T07:39:02Z
dc.date.created2014
dc.date.issued2014
dc.identifier.citationMuñoz-Moreno, J. A., Pérez-Álvarez, N., Muñoz-Murillo, A., Prats, A., Garolera, M., Jurado, M. A., et al. (2014). Classification models for neurocognitive impairment in HIV infection based on demographic and clinical variables. Plos One, 9, september(9)ca_ES
dc.identifier.issn19326203
dc.identifier.urihttp://hdl.handle.net/10854/3341
dc.description.abstractObjective: We used demographic and clinical data to design practical classification models for prediction of neurocognitive impairment (NCI) in people with HIV infection. Methods: The study population comprised 331 HIV-infected patients with available demographic, clinical, and neurocognitive data collected using a comprehensive battery of neuropsychological tests. Classification and regression trees (CART) were developed to btain detailed and reliable models to predict NCI. Following a practical clinical approach, NCI was considered the main variable for study outcomes, and analyses were performed separately in treatment-naïve and treatment-experienced patients. Results: The study sample comprised 52 treatment-naïve and 279 experienced patients. In the first group, the variables identified as better predictors of NCI were CD4 cell count and age (correct classification [CC]: 79.6%, 3 final nodes). In treatment-experienced patients, the variables most closely related to NCI were years of education, nadir CD4 cell count, central nervous system penetration-effectiveness score, age, employment status, and confounding comorbidities (CC: 82.1%, 7 final nodes). In patients with an undetectable viral load and no comorbidities, we obtained a fairly accurate model in which the main variables were nadir CD4 cell count, current CD4 cell count, time on current treatment, and past highest viral load (CC: 88%, 6 final nodes). Conclusion: Practical classification models to predict NCI in HIV infection can be obtained using demographic and clinical variables. An approach based on CART analyses may facilitate screening for HIV-associated neurocognitive disorders and complement clinical information about risk and protective factors for NCI in HIV-infected patients.en
dc.formatapplication/pdf
dc.format.extent7 p.ca_ES
dc.language.isoengca_ES
dc.publisherPlos Oneca_ES
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonsca_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/ca_ES
dc.subject.otherSida -- Tractamentca_ES
dc.titleClassification models for neurocognitive impairment in HIV infection based on demographic and clinical variablesen
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.doihttps://doi.org/10.1371/journal.pone.0107625
dc.relation.publisherversionhttp://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0107625
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.type.versioninfo:eu-repo/publishedVersionca_ES
dc.indexacioIndexat a SCOPUS
dc.indexacioIndexat a WOS/JCRca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Aquest document està subjecte a aquesta llicència Creative Commons
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by/3.0/es/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint