Mostrar el registro sencillo del ítem

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributor.authorLopez-de-Ipiña, Karmele
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorEgiraun, Harkaitz
dc.contributor.authorAlonso, Jesús B.
dc.contributor.authorTravieso, Carlos M.
dc.contributor.authorEzeiza, Aitzol
dc.contributor.authorBarroso, Nora
dc.contributor.authorEcay-Torres, Miriam
dc.contributor.authorMartinez-Lage, Pablo
dc.contributor.authorBeitia, Blanca
dc.date.accessioned2015-01-13T19:10:58Z
dc.date.available2015-01-13T19:10:58Z
dc.date.created2015
dc.date.issued2015
dc.identifier.citationLópez-De-Ipiña, K., Solé-Casals, J., Eguiraun, H., Alonso, J. B., Travieso, C. M., Ezeiza, A., et al. (2015). Feature selection for spontaneous speech analysis to aid in alzheimer's disease diagnosis: A fractal dimension approach. Computer Speech and Language, 30(1), 43-60.ca_ES
dc.identifier.issn0885-2308
dc.identifier.urihttp://hdl.handle.net/10854/3804
dc.description.abstractAlzheimer’s disease (AD) is the most prevalent form of degenerative dementia; it has a high socio-economic impact in Westerncountries. The purpose of our project is to contribute to earlier diagnosis of AD and allow better estimates of its severity by usingautomatic analysis performed through new biomarkers extracted through non-invasive intelligent methods. The method selectedis based on speech biomarkers derived from the analysis of spontaneous speech (SS). Thus the main goal of the present work isfeature search in SS, aiming at pre-clinical evaluation whose results can be used to select appropriate tests for AD diagnosis. Thefeature set employed in our earlier work offered some hopeful conclusions but failed to capture the nonlinear dynamics of speechthat are present in the speech waveforms. The extra information provided by the nonlinear features could be especially useful whentraining data is limited. In this work, the fractal dimension (FD) of the observed time series is combined with linear parameters inthe feature vector in order to enhance the performance of the original system while controlling the computational cost.© 2014 Elsevier Ltd. All rights reserved.en
dc.formatapplication/pdf
dc.format.extent18 p.ca_ES
dc.language.isoengca_ES
dc.publisherElsevierca_ES
dc.rights(c) 2015 Elsevier. Published article is available at: http://dx.doi.org/doi:10.1016/j.csl.2014.08.002ca_ES
dc.subject.otherAlzheimer, Malaltia d'ca_ES
dc.subject.otherProcessament de la parlaca_ES
dc.titleFeature selection for spontaneous speech analysis to aid in Alzheimer’s disease diagnosis: A fractal dimension approachen
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.doihttps://doi.org/doi:10.1016/j.csl.2014.08.002
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccessca_ES
dc.type.versioninfo:eu-repo/publishedVersionca_ES
dc.indexacioIndexat a SCOPUS
dc.indexacioIndexat a WOS/JCRca_ES


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir