Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributor.authorLopez-de-Ipiña, Karmele
dc.contributor.authorAlonso, Jesús B.
dc.contributor.authorTravieso, Carlos M.
dc.contributor.authorSolé-Casals, Jordi
dc.contributor.authorEzeiza, Aitzol
dc.contributor.authorFaundez-Zanuy, Marcos
dc.contributor.authorBeitia, Blanca
dc.contributor.authorCalvo, Pilar
dc.date.accessioned2015-01-30T08:27:30Z
dc.date.available2015-01-30T08:27:30Z
dc.date.created2015
dc.date.issued2015
dc.identifier.citationKarmele Lopez de Ipina, Jesus B. Alonso, Carlos M. Travieso, Jordi Solé-Casals, Aitzol Ezeiza, Marcos Faundez-Zanuy, Blanca Beitia, Pilar Calvo, “Feature selection for automatic analysis of emotional response based on nonlinear speech modeling suitable for diagnosis of Alzheimer's disease”, Neurocomputing, Volume 150, Part B, 20 February 2015, Pages 392–401.
dc.identifier.issn0925-2312
dc.identifier.urihttp://hdl.handle.net/10854/3854
dc.description.abstractAlzheimer׳s disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients’ brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD.en
dc.formatapplication/pdf
dc.format.extent24 p.ca_ES
dc.language.isoengca_ES
dc.publisherElsevierca_ES
dc.rights(c) 2015 Elsevier. Published article is available at: http://dx.doi.org/10.1016/j.neucom.2014.05.083
dc.rightsTots els drets reservatsca_ES
dc.subject.otherAlzheimer, Malaltia d'ca_ES
dc.titleFeature selection for automatic analysis of emotional response based on nonlinear speech modeling suitable for diagnosis of Alzheimer׳s diseaseen
dc.typeinfo:eu-repo/semantics/articleca_ES
dc.identifier.doihttps://doi.org/10.1016/j.neucom.2014.05.083
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES
dc.type.versioninfo:eu-repo/acceptedVersionca_ES
dc.indexacioIndexat a WOS/JCRca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint