Show simple item record

dc.contributorUniversitat de Vic. Escola Politècnica Superior
dc.contributor.authorSidorova, Julia
dc.date.accessioned2015-04-27T09:26:03Z
dc.date.available2015-04-27T09:26:03Z
dc.date.created2015-04-10
dc.date.issued2015-04-10
dc.identifier.urihttp://hdl.handle.net/10854/4017
dc.description.abstractTo integrate the benefits of statistical methods into syntactic pattern recognition, a Bridging Approach is proposed. Its steps are: (i) acquisition of a grammar per recognition class; (ii) comparison of the obtained grammars in order to find substructures of interest represented as sequences of terminal and/or non-terminal symbols and filling the feature vector with their counts; (iii) hierarchical feature selection and hierarchical classification, deducing and accounting for the domain taxonomy. The bridging approach has the benefits of syntactic methods: preserves structural relations and gives insights into the problem. Yet, it does not imply distance calculations and, thus, saves a non- trivial task-dependent design step. Instead it relies on statistical classification from many features. Our experiments concern a difficult problem of chemical toxicity prediction. The code and the data set are open-source.ca_ES
dc.formatapplication/pdf
dc.format.extent1 p.ca_ES
dc.language.isoengca_ES
dc.rightsTots els drets reservatsca_ES
dc.subject.otherBiotecnologia -- Congressosca_ES
dc.titleCicle de conferències 2014-2015. Lecture. Scallable resource-efficient learning from structured sequencesca_ES
dc.typeinfo:eu-repo/semantics/otherca_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_ES


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint