Show simple item record

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Departament de Biologia de Sistemes
dc.contributor.authorAgulló, Luis
dc.contributor.authorGutiérrez de Teran, H.
dc.contributor.authorGarcia-Dorado, D.
dc.contributor.authorVillà-Freixa, Jordi
dc.contributor.authorBuch, Ignasi
dc.date.accessioned2017-01-12T12:05:29Z
dc.date.available2017-01-12T12:05:29Z
dc.date.created2016-10
dc.date.issued2016-10
dc.identifier.citationAgulló, L., Buch, I., Gutiérrez-de-Terán, H., Garcia-Dorado, D., Villà-Freixa J. (2016). Computational exploration of the binding mode of heme-dependent stimulators into the active catalytic domain of soluble guanylate cyclase. Proteins, 84(10), 1534-1548. doi: 10.1002/prot.25096.es
dc.identifier.issn1097-0134
dc.identifier.urihttp://hdl.handle.net/10854/4798
dc.description.abstractSoluble guanylate cyclase (sGC), the main target of nitric oxide (NO), has been proven to have a significant role in coronary artery disease, pulmonary hypertension, erectile dysfunction, and myocardial infarction. One of its agonists, BAY 41-2272 (Riociguat), has been recently approved for treatment of pulmonary arterial hypertension (PHA), while some others are in clinical phases of development. However, the location of the binding sites for the two known types of agonists, heme-dependent stimulators and heme-independent activators, is a matter of debate, particularly for the first group where both a location on the regulatory (H-NOX) and on the catalytic domain have been suggested by different authors. Here, we address its potential location on the catalytic domain, the unique well characterized at the structural level, by an "in silico" approach. Homology models of the catalytic domain of sGC in "inactive" or "active" conformations were constructed using the structure of previously described crystals of the catalytic domains of "inactive" sGCs (2WZ1, 3ET6) and of "active" adenylate cyclase (1CJU). Each model was submitted to six independent molecular dynamics simulations of about 1 μs. Docking of YC-1, a classic heme-dependent stimulator, to all frames of representative trajectories of "inactive" and "active" conformations, followed by calculation of absolute binding free energies with the linear interaction energy (LIE) method, revealed a potential high-affinity binding site on the "active" structure. The site, located between the pseudo-symmetric and the catalytic site just over the loop β2 -β3 , does not overlap with the forskolin binding site on adenylate cyclases.es
dc.formatapplication/pdf
dc.format.extent15 p.es
dc.language.isoenges
dc.publisherWiley Periodicalses
dc.rightsTots els drets reservatses
dc.subject.otherDinàmica moleculares
dc.titleComputational exploration of the binding mode of heme-dependent stimulators into the active catalytic domain of soluble guanylate cyclase.es
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1002/prot.25096
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccesses
dc.type.versioninfo:eu-repo/publishedVersiones
dc.indexacioIndexat a WOS/JCRes
dc.indexacioIndexat a SCOPUSes
dc.identifier.datahttp://dx.doi.org/10.17632/c2fcbs64z6.1


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint