Mostra el registre parcial de l'element

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Facultat de Ciències i Tecnologia
dc.contributor.authorHerrera Palacio, Alba María
dc.date.accessioned2019-02-01T12:59:29Z
dc.date.available2019-02-01T12:59:29Z
dc.date.created2018
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/10854/5663
dc.descriptionCurs 2017-2018es
dc.description.abstractAs we age the cardiovascular system weakens and is more prone to cardiovascular diseases. Those cause arrhythmia, which is an abnormal heartbeat rhythm that can be life-threatening. An electrocardiogram (ECG) is the principal diagnostic tool used to record and interpret heart activity. Therefore, ECG are complex signals contain information about the each heartbeat, but are difficult to manually analyze. Hence, a computer-aided diagnosis (CAD) system is proposed to classify the different types of heartbeat and ensure that the assessment of ECG signals is objective and accurate. The method used for feature extraction of the heartbeats, once they are segmented form the original ECG signal, is the independent component analysis (ICA) of discrete cosine transform (DCT) coefficients. A deep neural network classifier is used to cluster heartbeats into one of 13 or 5 classes, corresponding to class-based or subject-based assessment strategies, by using those two kinds of features (one for each lead). The method acquires an overall accuracy of 97.68%, in the class-based assessment strategy and 97.87% in the subject-based assessment strategy, based on the MIT-BIH arrhythmia database. These results show that the proposed automated diagnosis system provides high reliability to be used by clinicians. The method can be extended for detection of other abnormalities of heart and to other physiological signals.es
dc.formatapplication/pdfes
dc.format.extent36 p.es
dc.language.isoenges
dc.rightsTots els drets reservatses
dc.subject.otherECGes
dc.subject.otherTractament del senyales
dc.subject.otherRecerca biomèdicaes
dc.titleHeartbeat classification using a deep neural networkes
dc.typeinfo:eu-repo/semantics/bachelorThesises
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccesses


Fitxers en aquest element

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix