Saving freshwater from salts. Ion-specific standards are needed to protect biodiversity
Author
Other authors
Publication date
2016ISSN
0036-8075
Abstract
Many human activities—like agriculture and resource extraction—are increasing the total concentration of dissolved inorganic salts (i.e., salinity) in freshwaters. Increasing salinity can have adverse effects on human health (1); increase the costs of water treatment for human consumption; and damage infrastructure [e.g., amounting to $700 million per year in the Border Rivers catchment, Australia (2)]. It can also reduce freshwater biodiversity (3); alter ecosystem functions (4); and affect economic well-being by altering ecosystem goods and services (e.g., fisheries collapse). Yet water-quality legislation and regulations that target salinity typically focus on drinking water and irrigation water, which does not automatically protect biodiversity. For example, specific electrical conductivities (a proxy for salinity) of 2 mS/cm can be acceptable for drinking and irrigation but could extirpate many freshwater insect species (3). We argue that salinity standards for specific ions and ion mixtures, not just for total salinity, should be developed and legally enforced to protect freshwater life and ecosystem services. We identify barriers to setting such standards and recommend management guidelines.
Document Type
Article
Language
English
Keywords
Salinitat
Pages
3 p.
Publisher
AAAS
Citation
Cañedo-Argüelles, M., C. P. Hawkins, B. J. Kefford, R. B. Schäfer, B. J. Dyack, S. Brucet, D. Buchwalter, J. Dunlop, O. Frör, J. Lazorchak, E. Coring, H. R. Fernandez, W. Goodfellow, A. L. González Achem, S. Hatfield-Dodds, B. K. Karimov, P. Mensah, J. R. Olson, C. Piscart, N. Prat, Ponsa S., C.-J. Schulz, A. J. Timpano. (2016). Saving freshwater from salts. Science AAAS, 351 (6276), 914-916. https://doi.org/10.1126/science.aad3488
Note
TECNIOspring Program
This item appears in the following Collection(s)
- Articles [1395]
Rights
Tots els drets reservats
(c) AAAS