Show simple item record

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Facultat de Ciències i Tecnologia
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Grup de recerca en Reparació i Regeneració Tissular (TR2Lab)
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Grup de recerca Quantitat BioImaging (QuBI)
dc.contributor.authorCullell i Dalmau, Marta
dc.contributor.authorOtero Viñas, Marta
dc.contributor.authorManzo, Carlo
dc.date.accessioned2024-01-24T14:45:41Z
dc.date.available2024-01-24T14:45:41Z
dc.date.created2020
dc.date.issued2020
dc.identifier.citationCullell-Dalmau, M., Otero-Viñas, M., Manzo, C. (2020). Research Techniques Made Simple: Deep Learning for the Classification of Dermatological Images. Journal of Investigative Dermatology, 140(3), 507-514. https://doi.org/10.1016/j.jid.2019.12.029es
dc.identifier.issn0022-202X
dc.identifier.urihttp://hdl.handle.net/10854/7665
dc.description.abstractDeep learning is a branch of artificial intelligence that uses computational networks inspired by the human brain to extract patterns from raw data. Development and application of deep learning methods for image analysis, including classification, segmentation, and restoration, have accelerated in the last decade. These tools have been progressively incorporated into several research fields, opening new avenues in the analysis of biomedical imaging. Recently, the application of deep learning to dermatological images has shown great potential. Deep learning algorithms have shown performance comparable with humans in classifying skin lesion images into different skin cancer categories. The potential relevance of deep learning to the clinical realm created the need for researchers in disciplines other than computer science to understand its fundamentals. In this paper, we introduce the basics of a deep learning architecture for image classification, the convolutional neural network, in a manner accessible to nonexperts. We explain its fundamental operation, the convolution, and describe the metrics for the evaluation of its performance. These concepts are important to interpret and evaluate scientific publications involving these tools. We also present examples of recent applications for dermatology. We further discuss the capabilities and limitations of these artificial intelligence-based methods.es
dc.formatapplication/pdfes
dc.format.extent9 p.es
dc.language.isoenges
dc.publisherElsevieres
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.caes
dc.subject.otherXarxes neuronals (Neurobiologia)es
dc.titleResearch Techniques Made Simple: Deep Learning for the Classification of Dermatological Imageses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1016/j.jid.2019.12.029
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.type.versioninfo:eu-repo/publishedVersiones
dc.indexacioIndexat a WOS/JCRes
dc.indexacioIndexat a SCOPUSes


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Aquest document està subjecte a aquesta llicència Creative Commons
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/deed.ca
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint