Mostrar el registro sencillo del ítem

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Grup de recerca Quantitat BioImaging (QuBI)
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Facultat de Ciències i Tecnologia
dc.contributor.authorKosuta, Tina
dc.contributor.authorCullell i Dalmau, Marta
dc.contributor.authorCella Zanacchi, Francesca
dc.contributor.authorManzo, Carlo
dc.date.accessioned2024-01-29T11:31:48Z
dc.date.available2024-01-29T11:31:48Z
dc.date.created2019
dc.date.issued2019
dc.identifier.citationKošuta, T., Cullell-Dalmau, M., Cella Zanacchi, F., Manzo, C. (2020). Bayesian analysis of data from segmented super-resolution images for quantifying protein clustering. Physical Chemistry Chemical Physics, 22(3), 1107-1114. https://doi.org/10.1039/c9cp05616ees
dc.identifier.issn1463-9076
dc.identifier.urihttp://hdl.handle.net/10854/7694
dc.description.abstractSuper-resolution imaging techniques have largely improved our capabilities to visualize nanometric structures in biological systems. Their application further permits the quantitation relevant parameters to determine the molecular organization and stoichiometry in cells. However, the inherently stochastic nature of fluorescence emission and labeling strategies imposes the use of dedicated methods to accurately estimate these parameters. Here, we describe a Bayesian approach to precisely quantitate the relative abundance of molecular aggregates of different stoichiometry from segmented images. The distribution of proxies for the number of molecules in a cluster, such as the number of localizations or the fluorescence intensity, is fitted via a nested sampling algorithm to compare mixture models of increasing complexity and thus determine the optimum number of mixture components and their weights. We test the performance of the algorithm on in silico data as a function of the number of data points, threshold, and distribution shape. We compare these results to those obtained with other statistical methods, showing the improved performance of our approach. Our method provides a robust tool for model selection in fitting data extracted from fluorescence imaging, thus improving the precision of parameter determination. Importantly, the largest benefit of this method occurs for small-statistics or incomplete datasets, enabling an accurate analysis at the single image level. We further present the results of its application to experimental data obtained from the super-resolution imaging of dynein in HeLa cells, confirming the presence of a mixed population of cytoplasmic single motors and higher-order structures.es
dc.description.sponsorshipHeLa IC74 cell line was a kind gift of Takashi Murayama, Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan. We thank Dr Angel Sandoval Alvarez, ICFO, Barcelona for helping with cell maintenance and transfections. C. M. acknowledges funding from FEDER/Ministerio de Ciencia, Innovacion y Universidades - Agencia Estatal de Investigacion through the "Ramon y Cajal" program 2015 (Grant No. RYC-2015-17896), and the "Programa Estatal de I + D + i Orientada a los Retos de la Sociedad" (Grant No. BFU2017-85693-R); from the Generalitat de Catalunya (AGAUR Grant No. 2017SGR940). C. M. also acknowledges the support of NVIDIA Corporation with the donation of the Titan Xp GPU. C. M. and M. C.-D. acknowledge funding from the PO FEDER of Catalonia 2014-2020 (project PECT Osona Transformacio Social, Ref. 001-P-000382). T. K. acknowledges the support of the Erasmus+ program of the European Union. F. C.-Z. acknowledges the Nikon Imaging Center at the Italian Institute of technology.EN
dc.formatapplication/pdfes
dc.format.extent17 p.es
dc.language.isoenges
dc.publisherRoyal Society Chemistryes
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.caes
dc.subject.otherInferència bayesianaes
dc.subject.otherProteïneses
dc.titleBayesian analysis of data from segmented super-resolution images for quantifying protein clusteringes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1039/c9cp05616e
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.type.versioninfo:eu-repo/submittedVersiones
dc.indexacioIndexat a WOS/JCRes
dc.indexacioIndexat a SCOPUSes


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Aquest document està subjecte a aquesta llicència Creative Commons
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/deed.ca
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir