Mostrar el registro sencillo del ítem

dc.contributorCullell i Dalmau, Marta
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Grup de recerca Quantitat BioImaging (QuBI)
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Facultat de Ciències i Tecnologia
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Grup de recerca en Reparació i Regeneració Tissular (TR2Lab)
dc.contributor.authorCullell i Dalmau, Marta
dc.contributor.authorNoé, Sergio
dc.contributor.authorOtero Viñas, Marta
dc.contributor.authorMeic, Ivan
dc.contributor.authorManzo, Carlo
dc.date.accessioned2024-01-29T12:29:43Z
dc.date.available2024-01-29T12:29:43Z
dc.date.created2021
dc.date.issued2021
dc.identifier.citationCullell-Dalmau, M., Noé, S., Otero-Viñas, M., Meic, I., Manzo, C. (2021). Convolutional Neural Network for Skin Lesion Classification: Understanding the Fundamentals Through Hands-On Learning. Frontiers in medicine, 8(644327). https://doi.org/10.3389/fmed.2021.644327es
dc.identifier.issn2296-858X
dc.identifier.urihttp://hdl.handle.net/10854/7695
dc.description.abstractDeep learning architectures for the classification of images have shown outstanding results in a variety of disciplines, including dermatology. The expectations generated by deep learning for, e.g., image-based diagnosis have created the need for non-experts to become familiar with the working principles of these algorithms. In our opinion, getting hands-on experience with these tools through a simplified but accurate model can facilitate their understanding in an intuitive way. The visualization of the results of the operations performed by deep learning algorithms on dermatological images can help students to grasp concepts like convolution, even without an advanced mathematical background. In addition, the possibility to tune hyperparameters and even to tweak computer code further empower the reach of an intuitive comprehension of these processes, without requiring advanced computational and theoretical skills. This is nowadays possible thanks to recent advances that have helped to lower technical and technological barriers associated with the use of these tools, making them accessible to a broader community. Therefore, we propose a hands-on pedagogical activity that dissects the procedures to train a convolutional neural network on a dataset containing images of skin lesions associated with different skin cancer categories. The activity is available open-source and its execution does not require the installation of software. We further provide a step-by-step description of the algorithm and of its functions, following the development of the building blocks of the computer code, guiding the reader through the execution of a realistic example, including the visualization and the evaluation of the results.es
dc.formatapplication/pdfes
dc.format.extent8 p.es
dc.language.isoenges
dc.publisherFrontiers Mediaes
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.caes
dc.subject.otherMelanomaes
dc.subject.otherPell -- Malaltieses
dc.subject.otherAprenentatge profundes
dc.titleConvolutional Neural Network for Skin Lesion Classification: Understanding the Fundamentals Through Hands-On Learninges
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.3389/fmed.2021.644327
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.type.versioninfo:eu-repo/publishedVersiones
dc.indexacioIndexat a WOS/JCRes
dc.indexacioIndexat a SCOPUSes


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Aquest document està subjecte a aquesta llicència Creative Commons
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/deed.ca
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir