Mostrar el registro sencillo del ítem

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Facultat de Ciències i Tecnologia
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Departament d'Enginyeries
dc.contributor.authorXu, Lijuan
dc.contributor.authorWang, Fan
dc.contributor.authorDempere Marco, Laura
dc.contributor.authorWang, Qi
dc.contributor.authorYang, Yan
dc.contributor.authorHu, Xiaopeng
dc.date.accessioned2024-02-12T07:46:59Z
dc.date.available2024-02-12T07:46:59Z
dc.date.created2020
dc.date.issued2020
dc.identifier.citationXu, L., Wang, F., Dempere-Marco, L., Wang, Q., Yang, Y., Hu, XP. (2020). Path-Based Analysis for Structure-Preserving Image Filtering. Journal of Mathematical Imaging and Vision, 62 (2) 253-271. https://doi.org/10.1007/s10851-019-00941-9es
dc.identifier.issn0924-9907
dc.identifier.urihttp://hdl.handle.net/10854/7788
dc.description.abstractStructure-preserving image filtering is an image smoothing technique that aims to preserve prominent structures while removing unwanted details in natural images. However, relevant studies mainly focus on small variances/fluctuations suppression and are vulnerable to separate pixels connected by some low-contrast edges or cluster pixels which exhibit strong differences between neighbors in highly textured region.Inspired by the fact that the human visual system significantly outperforms manually designed operators in extracting meaningful structures from natural scenes, we present an efficient structure-preserving filtering method which integrates similarity, proximity and continuation principles of human perception to accomplish high-contrast details (textures/noises) smoothing. Additionally, a Liebig's law of minimum-based distance transform is presented to seamlessly incorporate the three properties for the description of the filter kernel. Experiments demonstrate that our distance transform keeps a clustering-like manner of separating different image pixels and grouping similar ones with the awareness of structure. When integrating this affinity measure into the bilateral-filter-like framework, our method can efficiently remove high-contrast textures/noises while preserving major structures.es
dc.description.sponsorshipThis research was supported by the National Key Research and Development Program of China (No.2018YFA0704605), the National Key Project of Science and Technology of China (No.2017ZX05064), National Natural Science Foundation of China (No. 61272523) and China Scholarship Council (CSC).EN
dc.formatapplication/pdfes
dc.format.extent26 p.es
dc.language.isoenges
dc.publisherSpringeres
dc.rightsTots els drets reservatses
dc.subject.otherAgrupació Gestaltes
dc.titlePath-Based Analysis for Structure-Preserving Image Filteringes
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps://doi.org/10.1007/s10851-019-00941-9
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.type.versioninfo:eu-repo/acceptedVersiones
dc.indexacioIndexat a WOS/JCRes
dc.indexacioIndexat a SCOPUSes


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir