Show simple item record

dc.contributorInstitut Català de la Salut
dc.contributorHospital Germans Trias i Pujol
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Càtedra de Cures Pal·liatives
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Centre d'Estudis Sanitaris i Socials
dc.contributor.authorHernández Guillamet, Guillem
dc.contributor.authorMorancho Pallaruelo, Ariadna Ning
dc.contributor.authorMiró Mezquita, Laura
dc.contributor.authorMiralles, Ramón
dc.contributor.authorMas, Miquel Àngel
dc.contributor.authorUlldemolins Papaseit, María José
dc.contributor.authorEstrada Cuxart, Oriol
dc.contributor.authorLópez Seguí, Francesc
dc.date.accessioned2024-03-19T17:56:55Z
dc.date.available2024-03-19T17:56:55Z
dc.date.created2023
dc.date.issued2023
dc.identifier.citationHernández Guillamet G, Morancho Pallaruelo AN, Miró Mezquita L, Miralles R, Mas MÀ, Ulldemolins Papaseit MJ, Estrada Cuxart O, López Seguí F. (2023). Machine Learning Model for Predicting Mortality Risk in Patients With Complex Chronic Conditions: Retrospective Analysis. Online J Public Health Inform.15:e52782. https://doi.org/10.2196/52782es
dc.identifier.issn1947-2579
dc.identifier.urihttp://hdl.handle.net/10854/7840
dc.description.abstractBackground: The health care system is undergoing a shift toward a more patient-centered approach for individuals with chronic and complex conditions, which presents a series of challenges, such as predicting hospital needs and optimizing resources. At the same time, the exponential increase in health data availability has made it possible to apply advanced statistics and artificial intelligence techniques to develop decision-support systems and improve resource planning, diagnosis, and patient screening. These methods are key to automating the analysis of large volumes of medical data and reducing professional workloads. Objective: This article aims to present a machine learning model and a case study in a cohort of patients with highly complex conditions. The object was to predict mortality within the following 4 years and early mortality over 6 months following diagnosis. The method used easily accessible variables and health care resource utilization information. Methods: A classification algorithm was selected among 6 models implemented and evaluated using a stratified cross-validation strategy with k=10 and a 70/30 train-test split. The evaluation metrics used included accuracy, recall, precision, F1 -score, and area under the receiver operating characteristic (AUROC) curve. Results: The model predicted patient death with an 87% accuracy, recall of 87%, precision of 82%, F1 -score of 84%, and area under the curve (AUC) of 0.88 using the best model, the Extreme Gradient Boosting (XGBoost) classifier. The results were worse when predicting premature deaths (following 6 months) with an 83% accuracy (recall=55%, precision=64% F1 -score=57%, and AUC=0.88) using the Gradient Boosting (GRBoost) classifier. Conclusions: This study showcases encouraging outcomes in forecasting mortality among patients with intricate and persistent health conditions. The employed variables are conveniently accessible, and the incorporation of health care resource utilization information of the patient, which has not been employed by current state-of-the-art approaches, displays promising predictive power. The proposed prediction model is designed to efficiently identify cases that need customized care and proactively anticipate the demand for critical resources by health care providers.es
dc.formatapplication/pdfes
dc.format.extent13 p.es
dc.language.isoenges
dc.publisherJMIR Publicationses
dc.rightsAquest document està subjecte a aquesta llicència Creative Commonses
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.caes
dc.subject.otherAprenentatge automàtices
dc.subject.otherMortalitates
dc.subject.otherMalalties cròniqueses
dc.subject.otherIntel·ligència artificiales
dc.subject.otherMortes
dc.subject.otherAlgorismeses
dc.titleMachine Learning Model for Predicting Mortality Risk in Patients With Complex Chronic Conditions: Retrospective Analysises
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doihttps:doi.org/10.2196/52782
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.type.versioninfo:eu-repo/publishedVersiones
dc.indexacioIndexat a SCOPUSes


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

Aquest document està subjecte a aquesta llicència Creative Commons
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/deed.ca
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint