Mostrar el registro sencillo del ítem

dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Grup de Recerca en Tractament de Dades i senyals
dc.contributorGeociències Marines. Institut de Ciències del Mar
dc.contributorUniversitat de Vic - Universitat Central de Catalunya. Departament d'Enginyeries
dc.contributor.authorMartí i Puig, Pere
dc.contributor.authorSerra i Serra, Moisès
dc.contributor.authorRibas Prats, Francesca
dc.contributor.authorSimarro, Gonzalo
dc.contributor.authorCaballeria, Miquel
dc.date.accessioned2025-07-08T11:41:39Z
dc.date.available2025-07-08T11:41:39Z
dc.date.created2025-07
dc.date.issued2024
dc.identifier.citationMarti-Puig, P., Serra-Serra, M., Ribas, F., Simarro, G., & Caballeria, M. (2024). Automatic shoreline detection by processing planview timex images using bi-LSTM networks. Expert Systems with Applications, 240, 122566. https://doi.org/10.1016/j.eswa.2023.122566ca
dc.identifier.issn1873-6793ca
dc.identifier.urihttp://hdl.handle.net/10854/180299
dc.description.abstractA new automatic shoreline detection method by using a bidirectional Long Short-Term Memory (bi-LSTM) Network that processes images column by column is presented. The model is trained on manually extracted shorelines from time-exposure video-images and is very robust against the selection of images for training. Thanks to the novelty of working with image columns, instead of with the whole image, the amount of labelled images for training is limited to a few tens or even less if the conditions are good. Moreover, this column approach makes the model to be robust to variable illuminated images and more easily interpretable, light and fast. There is a wide range of configuration parameters for the bi-LSTM layer by which the system works correctly, which facilitate to use the same network in different video stations. The highest accuracy is obtained by using CIELAB colour space. Without pre-processing the raw colour channels or defining a region of interest and without post-processing the obtained shorelines, the model demonstrates impressive accuracy with mean errors of 2.8 pixels (1.4 m) in Castelldefels and 1.7 pixels (0.85 m) in Barcelona. The method could also be effective for satellite shoreline detection by using as input channel the water index of the satellite detection techniques.ca
dc.format.extent18 p.ca
dc.language.isoengca
dc.publisherElsevierca
dc.rightsAttribution-by 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.otherRibes (Ciències de la terra)ca
dc.subject.otherImatges satel·litàriesca
dc.subject.otherDetecció de senyalsca
dc.titleAutomatic shoreline detection by processing planview timex images using bi-LSTM networksca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.embargo.termscapca
dc.identifier.doihttps://doi.org/10.1016/j.eswa.2023.122566ca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.subject.udc62ca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-by 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como http://creativecommons.org/licenses/by/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir