Maximum likelihood Linear Programming Data Fusion for Speaker Recognition
Visualitza/Obre
Altres autors/es
Data de publicació
2009ISSN
0167-6393
Resum
Biometric system performance can be improved by means of data fusion. Several kinds of
information can be fused in order to obtain a more accurate classification (identification or
verification) of an input sample. In this paper we present a method for computing the
weights in a weighted sum fusion for score combinations, by means of a likelihood model.
The maximum likelihood estimation is set as a linear programming problem. The scores are
derived from a GMM classifier working on a different feature extractor. Our experimental
results assesed the robustness of the system in front a changes on time (different sessions)
and robustness in front a change of microphone. The improvements obtained were
significantly better (error bars of two standard deviations) than a uniform weighted sum or a
uniform weighted product or the best single classifier. The proposed method scales
computationaly with the number of scores to be fussioned as the simplex method for linear
programming.
Tipus de document
Article
Llengua
Anglès
Paraules clau
Veu, Processament de
Pàgines
19 p.
Publicat per
Elsevier
Citació
MONTE-MORENO, Enric i altres . "Maximum likelihood linear programming data fusion for speaker recognition". A: Speech Communication, 2009, vol. 51, núm. 9, pàg. 820-830
Aquest element apareix en la col·lecció o col·leccions següent(s)
- Articles [1389]
Drets
(c) 2009 Elsevier. Published article is available at: http://dx.doi.org/10.1016/j.specom.2008.05.009